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1 Introduction

Research and development is, conventionally, regarded as an investment which leads to

the creation of new information, such as new products, processes, or patents. Cohen and

Levinthal (1989) argue that research and development (R&D) has a dual purpose within the

firm. Not only does R&D generate new information, but it also enhances a firm’s ability

to assimilate and utilize existing information, such as that arising from other firms’ R&D

investments (‘spillovers’). The industrial organization literature has documented a strong

positive effect of R&D spillovers on firm value (Bloom, Schankerman, and Van Reenen

(2013)). Spillovers create more value for firms which have a greater ability to “exploit”

outside information. This can be interpreted as both an ability to imitate new innovations

or research, and an ability to utilize external knowledge of an intermediate sort, such as

findings in basic research. A firm’s ability to learn from other firms’ R&D is what we will

call its ‘absorptive capacity.’ Absorptive capacity represents an important alternative to

direct R&D investment for creating new information and knowledge.

Absorptive capacity need not arise through happenstance; it can be, and often is, a

strategic choice made by the firm. Through targeted investments in R&D a firm can obtain

insights into its competitors’ research programs, which it can then translate into refinements

and extensions of its own research. The firm, thus, learns from its rivals; in effect creating a

second mover advantage for itself in research and development. In this way, investments in

absorptive capacity serve as a substitute for direct R&D investment.

There are numerous examples of firms exploiting second-mover advantages to learn from

and eventually surpass first-movers. A well-known example from the early days of the inter-

net involving a specific product is the web browser. Microsoft’s Internet Explorer succeeded

as a new entrant in the market for web browsers by copying several features and adding fea-

tures that Netscape, the incumbent pioneer, did not have. For example, Internet Explorer

enabled users to look at web pages through familiar applications such as Word, and to hear

compact disc (CD)-quality sound. Bill Gates has referred to this as an “embrace and extend”

strategy, where one embraces existing standards and then extends them. Microsoft is often

not the first to market a product, however, it is often a winner that succeeds by out-featuring

and outlasting its competitors (Zhang and Markman (1998), Mossberg (1997)).1

1A related issue is the antitrust lawsuit brought against Microsoft by U.S. federal and state antitrust
authorities in 1998. The government’s case was rested on allegations that Microsoft compelled computer
manufacturers to license and install Internet Explorer, entered into contracts that tended to exclude rivals,
and engaged in various forms of predatory conduct primarily to eliminate the competitive threat posed by
Netscape (Gilbert and Katz (2001)). While the success of Internet Explorer was clearly enhanced by the
anti-competitive business tactics used by Microsoft, it is also clear that the “embrace and extend” strategy
was a key element of its success.

2



The interpretation of absorptive capacity as an alternative (or substitute) form of R&D

investment has several implications. First, this may be a more efficient form of R&D invest-

ment for many firms, especially smaller or financially constrained firms. The efficiency of a

second mover’s investment can be improved in two ways: reducing cost or creating a higher

quality product. In a sequential game, the second mover can reduce R&D costs by learning

from the first-mover’s technology. Furthermore, second-movers can take advantage of being

a follower by improving the existing technology. This can include enhancing and/or adding

new features. Second, the critique that R&D is complex, opaque, option-like, and generally

difficult to value will apply to absorptive capacity as well. Thus, to the extent that direct

R&D investments are mis-valued by investors, absorptive capacity may be as well. Finally,

as with traditional R&D investments, the effects of investments in absorptive capacity on

productivity, and ultimately firm value should be seen over long horizons (i.e., years, not

months).

In this paper, we employ a new measure of absorptive capacity based on total factor

productivity. We proxy for absorptive capacity by the contribution of R&D spillover to total

factor productivity after controlling for own R&D. R&D spillover for each firm constitutes

the sum of other firms’ R&D weighted by technological distance. The technological distance

between each pair of firms is estimated by calculating the distance between each firm’s

technology profiles, identified as the composition of each firm’s patent portfolio (Bloom et

al. (2014)). Controlling for own R&D is an important feature of our model as it helps us

establish the absorptive capacity channel of R&D.

An example of an industry in our sample which has high median values of absorptive

capacity is Drugs. Cohen et al. (2000) argue that industries in which patent protection is

more effective would be one where patentors obtain monopoly rents. We posit that if patents

are not as effective in an industry, then learning from counterparts is likely to be lower cost

than if patents are more effective barriers. Consequently, the incentive to develop AC will

be high in such an industry. Therefore, we anticipate that our measure of AC will be higher

in pharma due to the observed proliferation of “me-too” drug products.2 The high median

values of AC that we document in the pharma industry provides suggestive evidence that

our measure is capturing firm-level AC.

A well-known non-pharmaceutical example of a firm that has demonstrated a high degree

2Anecdotal pharmaceutical industry examples include Eli Lilly and Merck. Eli Lilly (Mounjaro) is a
second mover to Novo Nordisk (Ozempic) in the obesity space but is poised to overtake them with a more
powerful drug. Likewise, Merck (Keytruda) has trailed Bristol-Myers Squibb (Opdivo) in the oncology space
but has recently developed a more effective follow-up drug. For more systematic analyses of the phenomenon
of ‘small innovations’ in pharma and ‘me too’ drugs, see Ganuza et. al. (2009) and Aronson and Green
(2020).
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of absorptive capacity is Apple. Several products reveal the ability of Apple Inc. to develop

and improve upon its competitors’ offerings. For example, in the early 2000s, Research

in Motion’s Blackberry was a popular smartphone among business and government users

due to its inclusion of email capabilities alongwith a QWERTY keyboard. Apple improved

on the idea of the Blackberry and transitioned to a touchscreen keypad for its iPhone,

which launched in 2007. Tellingly, in 2006 Apple had one of the highest estimated values of

absorptive capacity in our sample.

We find that absorptive capacity appears to forecast returns. However, the effect is

almost exclusively driven by the smallest quintile of firms. Overall, stocks characterized

by high absorptive capacity in the past and that are also small outperform bigger firms or

small firms with low absorptive capacity. We obtain similar results using either a portfolio

formation approach or a Fama-MacBeth (1973) regression approach. Our results are robust

controlling for firm characteristics (e.g., size, book-to-market, momentum, illiquidity, lagged

returns,and idiosyncratic volatility) and various measures of R&D expenditures (e.g., ratio

of R&D to market equity, ratio of number of patents to market equity, and ratio of capital

expenditures to market equity).

A potential concern is that absorptive capacity of small firms captures existing linkages

between firms within the same or closely related industries. Under this alternative hypoth-

esis, existing linkages between firms would be responsible for, and thus entirely account for,

the absorptive capacity channel. We include a multitude of known predictors of firm returns

in our specification to account for this concern. For example, we include each firm’s industry

returns (Moskowitz and Grinblatt (1999)). In a separate specification, we control for each

firm’s supplier and customer returns (Cohen and Frazzini (2008), Menzly and Ozbas (2010)).

In addition, for firms that have more than one business line, we control for returns gener-

ated by a portfolio of its “pseudo-conglomerate” peer firms, i.e., a portfolio of single-line

firms that collectively span the firm’s lines of business (Cohen and Lou (2012)). In all these

specifications, our main result remains statistically significant. This indicates that the infor-

mation firms acquire through learning via the absorptive capacity channel is not explained

by information transferred within the industry or through the supply chain.

The relation between innovation and stock returns has been widely-studied. We show

that our main results are unchanged after controlling for other documented R&D effects.

We control for technological leaders, i.e., firms in the same industry as the focal firm which

have large investments in R&D, and peers, firms which are technological followers (Jiang et

al. (2016)). We control for large increases in R&D that took place in the last year, and over

the last five years (Eberhart and Maxwell (2004)).

We confirm the forecast stock return results using portfolio analysis. Specifically, forming
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portfolios by double sorting firms into absorptive capacity and size quintiles, we show that

a portfolio of firms with high absorptive capacity and small size outperforms a portfolio of

low absorptive capacity, large size as well as a portfolio with low absorptive capacity, small

size. A portfolio of high absorptive capacity, and small size firms earns 190 basis points per

month (t= 4.58) and 218 basis points per month (t = 4.45) in equal- and value-weighted

excess returns, respectively. The Carhart four-factor equal-weighted alphas are 135 basis

points (t= 5.77) and value-weighted alphas are 146 basis points (t = 5.02) for the high

absorptive capacity, small size firms. In contrast, a portfolio of firms with low absorptive

capacity, and small size earns 44 basis points per month (t = 1.86), and 9 basis points (t =

0.35) in four-factor equal- and value-weighted alpha, respectively .

If AC is a substitute form of R&D, then we should see real effects of AC consistent with

own firm R&D investment. For example, we should see firms with high AC generating more

and higher quality innovative outputs than firms less well positioned to learn from spillovers.

In fact, we do find that small firms with high absorptive capacity produce a greater number

of patents and they produce more highly cited patents. Strikingly, we find that small market

cap, High AC firms generate an additional 1.59 patents per year. This is roughly equivalent

to a 0.07 standard deviation increase in patent output. In addition, these firms are also

more likely to make future R&D investments of their own. These results are consistent with

the hypothesis that small firms with higher absorptive capacity invest in future R&D and

convert potential spillovers into valuable innovations.

Although, we cannot entirely rule out risk based explanations, our results suggest that

higher returns earned by small firms with high absorptive capacity cannot be explained by

risk factors alone. We conduct two further tests to explore a mispricing based explana-

tion for our results. First we use the factors developed by Asness, Frazzini, and Pedersen

(2019) (Quality minus Junk, QMJ, a long-horizon mispricing factor), Stambaugh and Yuan

(2017) (PERF for transient mispricing and MGMT for long-horizon mispricing), and Daniel,

Hirshleifer, and Sun (2020) (PEAD for short-horizon mispricing and FIN for long-horizon

mispricing). Interestingly, we find that the higher returns earned by small firms with high

absorptive capacity are not related to the short-horizon factors, but they are strongly asso-

ciated with the long-horizon mispricing factors.

Second, we examine the stock price reaction around subsequent earnings announcements.

This test is well established in the literature as a test to separate risk from mispricing

explanations (La Porta et al. (1997), Gleason and Lee (2003), Engelberg et al. (2018) among

others). Earnings announcements help correct investor expectation errors about future cash

flows and, therefore, if an anomaly is associated with investor misperceptions about the

firms’ cash flows, then a disproportionate amount of its returns should be realized around
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subsequent earnings announcements. On the other hand, if an anomaly is driven by changes

in underlying risk then future returns should accrue more evenly over subsequent periods.

Our tests show that the high absorptive capacity effect for small firms is 550% higher during

the 3-day earnings announcement window than on a non-announcement day. This result is

evidence in favour of a mispricing hypothesis.

We evaluate the potential channels by which mispricing may be operating. We identify

firms which are exposed to high costs of arbitrage (high idiosyncratic volatility, low firm

age, and high Bid-Ask spread) and limited investor attention (low analyst coverage, high

forecast dispersion, and low institutional ownership). We find that our main result is signif-

icantly stronger for firms subject to higher arbitrage costs and characterized by less investor

attention.

In addition to the tests reported in the main text of this study, our Internet Appendix

provides several robustness tests. First, we document the robustness of our specification to

changes in the definition of small firms. We use an indicator for the smallest quintile of firms

as a proxy for size. We also use the bottom 10 percentile of NYSE size deciles to define

small firms. Second, we report the robustness of our return predictability result for two

sub-periods. In both sub-periods, we find that the high absorptive capacity effect on small

firms is robust. Third, we employ alternative definitions of absorptive capacity, varying the

regression specification to accommodate alternative measures of absorptive capacity. Our

results show that for these alternative proxies, the high absorptive capacity effect on small

firms is positive and significant. In addition, we control for own R&D intensity, which has

been used in earlier work as a proxy for absorptive capacity (Cohen and Levinthal (1989),

Oh (2017)). Our main result is robust to this inclusion. Fourth, we use alternative industry

classifications to control for industry fixed effects. In separate specifications, we use Fama-

French 12 industry, Fama-French 30 industry classifications, and SIC 2-digit classifications.

In all these ases, our main result continues to be robust and significant.

Our main result is most similar to Stoffman, Woeppel and Yavuz (2022). They focus

on documented innovators (firms with recent patent grants) whereas we focus on firms that

more generally are able to convert R&D spillovers into increased productivity. They find

that small innovators earn higher future returns than small non-innovators. They argue that

under-reaction cannot explain long-term returns and so their finding must be driven by a

risk borne by small innovators. Our paper focuses on innovative firms, more generally, and

we find evidence consistent with long-horizon mispricing in these firms.

In addition to our contribution to the literature on innovation, R&D spillovers, and

returns, we create a novel measure of absorptive capacity. Our method is motivated by

economic theory which models innovation as the driver of sustainable economic growth and is
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directly responsible for generating changes in total factor productivity (TFP). Theoretically,

absorptive capacity contributes directly to TFP by increasing the output of the firms capital

and labor outputs beyond that implied by traditional R&D investments alone (Yoon (2022)).

Based on this theoretical linkage, we proxy for absorptive capacity using TFP as the channel

through which spillovers contribute to firm value.

Our approach also has two key strengths over other empirical proxies. First, our measure

does not impose the constraint that absorptive capacity always manifests itself as a patent.

In other words, second movers do not necessarily have to register a patent for the firm to

have increased the value of their productive assets. By contrast, Mancusi (2008), measures

absorptive capacity based on the elasticity of an industry’s patent outputs to domestic and

foreign R&D spillovers at the country level. This measure obviously captures patent outputs,

but understates the absorption (learning) actually taking place. We know the direction of

this bias, but not its magnitude.

Second, our method controls for the contribution of a firm’s own R&D to its TFP.

This allows us to differentiate between direct R&D effects and R&D spillover effects. In

other words, we focus on the incremental contribution of a firm’s ability to utilize external

knowledge. By contrast, proxies for absorptive capacity like R&D intensity (Cohen and

Levinthal (1989), and Oh (2017)) that are based on own R&D, have confounding implications

as the relationship between spillovers and own R&D investment is intermingled. Both the

direction and the magnitude of the bias are unclear in this case. On one hand, a firm may be

motivated to invest in R&D to exploit existing external knowledge, this would increase an

absorptive capacity proxy such as R&D intensity. On the other hand, a firm that has high

absorptive capacity may substitute absorptive capacity for its traditional R&D investments

to focus on the existing pool of knowledge created by spillovers. This would decrease the

R&D intensity measure. Because our measure differentiates between absorptive capacity

and own R&D it can, therefore, be utilized to study such confounding effects of absorptive

capacity. Yoon (2022), for example, shows using a firm-level measure, related to our AC

measure, that high AC along with spillovers is positively related to R&D intensity in non-

high-tech sectors while it is negatively related to R&D intensity in high-tech sectors.

In contrast to the conclusion that returns associated with innovation are compensation for

risk, numerous authors find a positive relation between changes in R&D and future returns

which they attribute to mispricing (early examples include Chambers et al., 2002; Eberhart

et al., 2004). Gu (2005) shows that a change in patent citation impact scaled by total assets

predicts future returns.3 In a series of papers Cohen, Hirshleifer, and their co-authors argue

3However, Gu(2005) concludes that abnormal returns are very small and unlikely to survive trading
costs.
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that R&D investments are undervalued for several non-risk driven reasons including the

difficulty of evaluating complex R&D, the low salience of R&D investment announcements,

information processing costs, and limited investor attention.4 We contribute to this literature

by documenting that the mispricing in our results is more in line with long-horizon mispricing.

In summary, we identify a novel channel, absorptive capacity, as a source of market

underreaction to the information contained in reported R&D investments. Our specific

measure of absorptive capacity allows us to estimate the extent to which firms are able to

exploit the information environment created by R&D spillovers. This matters because, in

short, it is not simply that R&D investment is opaque, option-like, or difficult to value.

R&D appears to be mis-priced in part because the impact on firm value of a firm’s own

R&D investments is also a function of complex interactions of those investments with its

technological rivals’ R&D investments.

2 Literature Review

This paper is related to the literature relating R&D productivity and future returns. Cohen,

Diether, and Malloy (2013) measure a firm’s ability to innovate by relating a firm’s R&D

stock to its sales growth. They interpret this measure as capturing a firm’s past track

record, allowing investors to predict returns and future outcomes in patents and innovations.

Hirshleifer, Hsu, and Li (2013) create measures of innovative efficiency that represent the

output per input of R&D based on the ratio of patents or patent citations to R&D. They find

that high innovative efficiency is related to high future returns and operating performance.

Stoffman, Woeppel, and Yavuz (2019) focus on small innovators and document that they

have higher returns in comparison to small non-innovators. The authors conclude that these

returns are compensation for risks faced by small innovators.

We focus on a firm’s ability to utilize external R&D. Cohen and Levinthal (1989) focus on

the two roles of Research and Development (R&D): producing new knowledge and enhancing

the ability to utilize external knowledge. They call this second aspect a firm’s absorptive

capacity. The traditional concern was that knowledge or R&D efforts can be appropriated

by others and this could lead to underinvestment. However, the logic of absorptive capacity,

implies there may be incentive to invest more (or atleast offset some of the negative spillover

effects). The main contribution of Cohen and Levinthal (1989) is to document that contrary

to the traditional fear that knowledge spillovers always have negative effects on own R&D

4Cohen et al.(2013) (firm’s ability to transform R&D investments into future sales), Hirshleifer et
al.(2013) (ratio of patents or citations to R&D assets), and Hirshleifer et al.(2018) (innovative originality)
each develop R&D-related measures that forecast higher future returns which they attribute to mispricing
rather than risk.
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investment, the knowledge gain from spillovers may encourage R&D investment because the

ability to capitalize on spillovers is dependent on prior R&D investment. In other words,

spillovers can have positive effects.

Bloom, Schankerman and Van Reenen (2013) also recognize the externalities arising from

rival’s R&D spillovers. The paper relates the spillovers to market value, patents, produc-

tivity and R&D intensity. The R&D spillover from technologically close firms should have

positive effects on a firm’s market value, whereas R&D spillover from firms in closely related

product markets, should have negative effects on a firm’s market value. Their paper shows

that firm-specific spillovers matter and that the effects can be different across product and

technology spaces. Lychagin, Pinkse, Slade, and Van Reenen (2016) focus on the effects of

R&D spillovers on productivity. They distinguish three sources of R&D spillovers: tech-

nological, product market, and geographic. Their main contribution is in identifying the

importance of geographic distance in knowledge spillovers.

Our paper is broadly motivated by the economic implications of spillovers. Chalioti (2019)

shows that when R&D between firms are strategic complements, there is a regenerative

feedback effect that makes spillovers have positive effects on own R&D investment. Firms

benefit from the cost reduction effects of R&D and spillovers even when they are producing

homogenous goods. Smrkolj and Wagener (2019) utilize an infinite horizon dynamic model

to show that spillovers have different implications on future market structure, depending

on the original state of the market. Low initial spillovers may induce entry or creation of

markets with high production cost, as the potential profits can be strong incentives for R&D

efforts. High spillovers can induce competition in the market as firms take advantage of

the spillovers, however, in the later stages of development when production costs are low,

it reduces the innovative efforts of the frontier firms as the potential spill-outs are more

costly then the benefits. In addition, high levels of spillover may be related to laggards free-

riding; the overall effect being a lower level of technological development. Lopez and Vives

(2019) model the effect of overlapping ownership agreement and its effect on R&D activity

and production output. Their model shows that in industries that have large spillovers,

overlapping ownership agreements are welfare enhancing and increase R&D.

Providing some insight to the empirical economic effects of spillovers, Konig, Liu, and

Zenou (2019) model the economic effect of R&D alliance network in terms of spillovers and

market effect of product rivalry. Empirically, they show that spillovers dominate, and the

net effect is strictly positive. Lucking, Bloom, and Van Reenen (2019) investigate the nature

of spillovers through time. Spillovers have been relatively stable in magnitude except around

the period of the dot-com bubble, when there was an increase.

At the firm level, Li, Qui, and Wang (2019) show that conglomerate firms, firms with high
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technological proximity to other patenting firms, are more likely to form alliances. These

alliances in turn lead to more patents, novel patents as well as patents with more impact,

especially for these technology conglomerates. Glitz and Meyersson (2020) documents how

industrial espionage helped reduce sector TFP gap between East and West Germany during

the Cold War. This implies that spillover of knowledge has effects on productivity.

This paper is also related to the theoretical literature that investigates the dynamics

of R&D leaders and followers. Bondarev and Greiner (2018) model the complex dynamics

between R&D leaders and followers. Their model illustrates that the dynamics depend on

the technological gap between the leader and follower as well as the number of competitors.

Aldieri, Sena, and Vinci (2018) distinguishes between technological knowledge spillovers and

rent spillovers to show that absorptive capacity is important for knowledge spillover. They

focus on the nature of knowledge a firm requires.

Our paper is most closely related to the literature on spillovers and future returns. Nguyen

and Keckes (2020) focus on the economic information inherent in technology spillovers that

is relevant to innovative firms. They argue that the information gleaned from technologi-

cally related firms potentially reduces the overall cost of collecting information. However,

this abundance of information can cause an increase in information processing costs if the

valuation of firms become too complex and uncertain. The increased complexity decreases

the motivation for outsiders to process information and as a result they are at a disad-

vantage relative to insiders. Lee, Sun, Wang, and Zhang (2019) note that firms’ R&D

investments interact and show that past technologically linked firms’ returns predict (lead)

the focal firm’s return. They coin this, technology momentum, and they show that it is

different from industry momentum as firms can be technologically related but be in different

industries. The effect is attributed to mispricing due to slow incorporation of information

for technology-intensive firms and firms with more industry specific technology. Oh (2017)

shows that technology spillovers alone are not sufficient for future high returns; a comple-

mentary relationship between spillovers and absorptive capacity is necessary. The effect is

greater for stocks with limited attention, implying mispricing as a source. Oh (2017) uses

R&D intensity as a proxy for absorptive capacity. Our measure is based on firm productivity

or value added. Moreover, as noted above, we view absorptive capacity as a substitute for

some R&D investment.

Finally our paper is related to the growing literature on mis-pricing factors. Asness,

Frazzini, and Pedersen (2019) define quality as a combination of various firm characteristics

such as profitability, growth and safety. They document that quality is underpriced. High

quality stocks tend to have (only moderately) high prices, which leads to these stocks having

higher risk-adjusted returns. They create a factor portfolio, QMJ, and show that returns
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on QMJ are correlated with analyst errors. Stambaugh and Yuan (2017) aggregate 11

separate anomalies into two clusters by ranking stocks according to these anomalies. The

clusters are identified by combining the stocks with the greatest return co-movement. The

clusters correspond to a short- and a long-time horizon over which they operate. In a

similar spirit, Daniel, Hirshliefer and Sun (2020) augment existing asset pricing models by

adding two factors based on long- and short-horizon mispricing. The underlying intuition

is that investors with limited attention underreact to public information which arrives at

a high frequency. For example, stock prices underreact to earnings surprises, but these

misperceptions are corrected at short-time horizons. An example of mispricing that would

have longer-horizon consequences is investor overconfidence.

3 Data

We discuss data sources and construction of our absorptive capacity measure, and then

present the summary statistics of the variables. Our sample includes firms in the intersection

of Center for Research in Security Prices (CRSP), Compustat, and the National Bureau of

Economic Research (NBER) patent database5.

We obtain accounting data from Compustat, and firm returns from CRSP. All domestic

common shares trading on NYSE, NASDAQ, and AMEX (with CRSP codes 10 or 11)

with accounting and returns data are included except financial firms, which have four-digit

standard industrial classification (SIC) codes between 6000 and 6999 (finance, insurance,

and real estate sectors), and utilities, which have SIC codes between 4900 and 4949. To

ensure that the relevant accounting information is publicly known to investors at the time

of portfolio formation, we impose at least a six-month gap between fiscal year end month

and the date of portfolio formation.

The NBER patent database spans patents applied for within the years 1970 to 2006.

We first match the NBER patent data with Compustat accounting data for the most recent

fiscal year, i.e., the fiscal year ended in calendar year t. We then match CRSP stock returns

from July of year t+ 1 to June of year t+ 2. We restrict our sample to include firms which

have at least one patent granted over the period 1976 to 2006. To reduce the impact of

micro-cap stocks, we eliminate observations that have a price of less than one dollar at the

time of portfolio formation.

5https://sites.google.com/site/patentdataproject/Home
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3.1 Absorptive Capacity, Spillover, and Total Factor Productivity

Absorptive capacity is the ability of a firm to “learn” from the R&D expenditures of its

competitors or “technologically-close” firms, to improve its performance. In this section,

we define three main elements - absorptive capacity, R&D spillover, and firm performance.

Bloom, Schankerman, and Van Reenen (2013) show that R&D spillover, or the R&D expen-

ditures of technologically-close firms, can have a measurable impact on firm value. We define

absorptive capacity (AC) as the ability of a firm to take advantage of the R&D expenditures

of technologically-close firms and turn those R&D spillovers into higher own value. As we

detail below, our measure of AC will be firm-year specific.

Following Bloom et al (2013) and Jaffe (1986), we define technological distance, TECHij,

as the uncentered correlation of the patent distributions between all pairs of firms i and j.

TECHij =
(TiT

′
j)

(TiT ′i )
1/2(TjT ′j)

1/2
(1)

where Ti = (Ti1, Ti2, ..., Ti421) is a vector of firm i’s proportional share of patents across the

421 USPTO technology classes over the time period 1970 to 2006. Technological closeness

ranges between zero and one, depending on the degree of overlap in technology space, and

is symmetric in firm ordering (TECHij = TECHji).

We then define R&D spillover (Spilltechit) as the average R&D stock of technologically-

close firms, weighted by pairwise technological distance (Jaffe (1986)). Formally, Spilltech

for firm i in year t is defined as:

Spilltechit =
∑
j 6=i

TECHijGjt =
∑
j 6=i

(TiT
′
j)

(TiT ′i )
1
2 (TjT ′j)

1
2

Gjt (2)

where Gjt = RDjt + (1 − δ)Gjt−1

Gjt is the R&D stock of firm j in year t, calculated using the perpetual inventory method

with a depreciation rate δ = 15% (Bloom et al (2013), Hall, Jaffe, and Trajtenberg (2005)).

RDjt is the R&D expenditure of firm j in year t.

We then calculate total factor productivity of each firm for each year, which is our measure

of firm performance. Total factor productivity (TFP) measures the overall effectiveness

with which capital and labor are used in the production process. It is a broader gauge of

firm performance than some of the more conventional measures, such as firm profitability

(İmrohoroğlu and & Tüzel (2014)). We estimate the following production function :

yit = β0 + βkkit + βllit + ωit + ηit (3)
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where yit is the log of value added (defined as sales minus material expense, where material

expense is the difference between total expense and labor expense), for firm i in year t, lit,

and kit are the logged values of labor and capital respectively, and ωit is the productivity (or

TFP) of the firm. ηit represents an idiosyncratic error term.

The parameters of the production function are estimated using a semi-parametric method

(Olley and Pakes (1996)), explained in detail in the Appendix. A major advantage of this

method, over other approaches such as the ordinary least squares (OLS) method, is that

it controls for simultaneity and selection biases as well as within-firm serial correlation in

productivity.

We use Compustat for the years 1963 to 2006 to estimate value added, and get firm-

specific capital expenditure and employment data. Following İmrohoroğlu and & Tüzel

(2014), National average wage index from the Social Security Administration is incorporated

to compute labor expense. We include industry-year fixed effects, based on SIC three-digit

industries, in the estimation. This inclusion ensures that our TFPs are free from the effect

of aggregate, and industry level shocks in any given year.

The production function parameters are estimated each year using data up until that

year to mitigate a potential look-ahead bias in our TFP estimates. We compute TFPs for

each year between 1980 and 2006 using that year’s data and the corresponding production

function estimates for the year.

Ln(TFPit) = yit − β̂0t − β̂ktkit − β̂ltlit (4)

We proxy for absorptive capacity by the contribution of R&D spillover to firm produc-

tivity.6 We run firm-by-firm rolling regressions of firm performance (Ln(TFPit)) on lagged

R&D spillover (Ln(Spilltechit−j)), where j = 1, 2, 3, 4, and 5. We run separate regressions

for each of the five, R&D spillover lags; we then take the average of these five coefficients

as our measure of absorptive capacity (ACit) (Cohen, Diether, Malloy (2013))7. We also

include the firm’s own R&D stock (Ln(Git−j), and an indicator for zero value of own R&D

stock, to account for the effect of own R&D on firm productivity.

6Productivity is actually a more direct measure of the firms ability to convert externally created knowl-
edge into real output than patent output. Patent output is a noisy measure of absorptive capacity because
only a small fraction of innovations are patented.

7We conduct several robustness tests for the regression specification which include (1) using the average
of past 5 years’ Spilltech as the independent variable and the average of five years’ TFP as the dependent
variable, and (2) Including all five lags of Spilltech in the same regression specification
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Ln(TFPit) = ait−j + bit−jLn(Git−j) + cit−j1(Git−j = 0)

+ dit−jLn(Spilltechit−j) + eit−j (5)

ACit =
1

5

5∑
j=1

dit−j (6)

where, Git−j is the R&D stock of firm i in year t− j, 1(Git−j = 0) is an indicator for zero

R&D stock. We calculate ACit at the end of each fiscal year, and then map it to the return

data from July of year t+ 1 to June of year t+ 2.

The final sample consists of 219,839 firm-month observations spanning July 1986 to Dec

2006, i.e., 246 months.

3.2 Summary Statistics

Table 1 Panel A reports descriptive statistics for our sample firms. Given our focus on cross-

sectional variation in AC, we sort the sample by lagged absorptive capacity. At the end of

June of year t, we divide firms into five AC groups based on the absorptive capacity twelve

months ago by the 20th, 40th, 60th, and 80th percentiles of AC. The average number of firms

in each of the quintiles is around 184. The average monthly excess return, i.e., monthly firm

return minus the one-month Treasury bill rate, is around 0.96%. The average AC is -4.45

in the lowest quintile, monotonically increasing to 4.09 in the highest quintile. The total

factor productivity (Ln(TFP)) is -0.24 in the lowest AC quintile, and -0.05 in the highest

AC quintile.

The mean value of Spilltech is $ 0.59 billion in the lowest AC quintile and $ 0.61 billion in

the highest AC quintile. The values of Spilltech across the AC quintiles are not statistically

different. This fact is noteworthy as it implies that firms across AC quintiles are, on average,

exposed to similar levels of spillover from their counterparts. The mean value of Size is also

similar across the AC quintiles, which suggests that firms of similar sizes are present in all

quintiles. We report the means of all remaining control variables across the AC quintiles in

the following rows. For nearly all of these variables, the means are not significantly different

across the lowest and the highest AC quintile. Finally, note that excess returns, return on

assets (ROA), and asset growth (AG), are increasing across AC quintiles. This is consistent

with the hypothesis that firms with higher AC have a greater ability to transform R&D

spillovers into its own value (i.e., into productive assets).

In Panel B, we focus on some diagnostics of our AC measure. If we are truly capturing

a meaningful measure of a firm’s ability to learn from its counterparts, we might expect to

see some level of persistence in this firm characteristic. We report the annual persistence in
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a firm’s AC quintile for yearly lags of one to five years. If our measure of AC was completely

random we would expect to see firms remain in the same quintile about 20% of the time

from one year to the next. Instead we find that firms stay in the same quintile about half

the time from one year to the next. This persistence is most pronounced at the extremes.

Firms in the highest AC quintile remain in this same top quintile in the following year 56%

of the time. Similarly, firms in the lowest AC quintile remain in this same bottom quintile

in the following year 54% of the time.

In Table 2, we provide some summary statistics for AC across industries. These industry

statistics are meant to serve as examples to illustrate that AC is likely measuring firm-level

learning or absorptive capacity.

Our AC measure will be higher if R&D spillovers (Spilltech) from “technologically close”

firms is high and if the correlation between these R&D spillovers and the TFP of the firm

is high. Therefore, for each industry we provide summary statistics for AC and Spilltech.

It is also noteworthy that in our calculation for TFP, we have included industry-year fixed

effects. As a result, our TFP and AC measures do not incorporate aggregate, industry-level

shocks but firm-level changes in these measures.

The industries with some of the highest median values for AC are Drugs and Food. The

industries with some of the lowest median values of AC are Textiles, Oil & Petroleum and

Mining and Minerals. Cohen et al. (2000) posit that industries in which patents are strong

and effective would be one where patentors obtain monopoly rents. This relates closely

to our channel of absorptive capacity. Our hypothesis that firms are able to learn from

technologically close counterparts depends on industry level intellectual property protection

or patent effectiveness. If patents are strong and effective then we argue that AC will be

low, on average, in such an industry.

Ganuza et al. (2009), and Aronson and Green (2020) have highlighted the existence

of “me-too” products in the Drugs industry. These are follow-on products which are small

modifications to existing competitor products. The ease of creating me-too products suggests

that the patent effectiveness is likely to be relatively low in drugs and pharmaceuticals.

Consequently, we would expect firms to invest in AC to exploit this weak protection. This

hypothesis aligns with the high estimated values of AC for this industry in our sample. The

ability to create small changes based on existing products is an example of firm-level learning.

KamranBilir (2014) documents that the length of the product lifecycle in any industry

can have a knock-on effect on patent effectiveness. If product lifecycle length is long, then

this greater length can further increase the “effectiveness” of patents. On the flip side, if

product lifecycle length is short, then this has a dampening effect on patent effectiveness.

Drugs or pharmaceutical products are categorized as low to medium lifecycle length. This
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fact also aligns with the high AC for the Drugs industry documented in our sample.8

To further develop our intuition about the AC measure, we focus on two industries, one

which has some of the highest AC firms and one which includes some of the lowest AC firms,

Drugs and Textiles respectively. Figure 1 plots the median AC for all firms across the two

industries over time. The higher line shows the median AC for Drugs and the lower line for

Textiles. Over the entire sample period, except for the first year, the median AC for firms

in the Drugs industry is equal to or higher than that for firms in the Textiles industry. This

figure illustrates that the median AC is not driven by outliers over time. It also reveals that,

to some extent, our measure of AC is relatively stable within an industry.

To provide concrete examples of AC, we focus on two firms in our sample with high esti-

mated values of absorptive capacity: the first example is Apple. In 1983, Apple introduced

its personal computer, Lisa, using several innovations such as the graphical user interface

(GUI) from the Alto computer at Xerox PARC9. In 2001, Apple introduced the iPod. There

were over 50 other mp3 players in the market at the time of release, however, the iPod

quickly took over the market. In the early 2000s, Blackberry was a popular smartphone

among business and government users due to its inclusion of email capabilities into a phone.

Apple improved on Research in Motion’s Blackberry and transitioned from a full physical

keypad to a touch screen keypad. In the early 2000s, the estimated value of AC for Apple

was at least in the second highest quintile each year.

Another example of a firm with a high AC is Spectranetics Inc. This example illustrates

the phenomenon of high AC in a small firm, which is the group of firms which contribute

directly to our main result of higher returns. Spectranetics was a second mover as a medical

laser manufacturer, following Advanced Interventional Systems Inc., its major competitor.

Advanced Interventional System Inc. was started by a team of cardiovascular specialists in

California, who wanted to apply lasers to arteries in surgery. The team brought in laser

physicists and fiber optics scientists to make it a reality.10 The follower, Spectranetics,

was founded by an electrical engineering instructor in Colorado, Robert Golobic, who had

research experience in lasers but no medical knowledge.11 Both companies worked on ex-

cimer laser coronary atherectomy (ELCA) devices used for coronary surgeries. Advanced

8KamranBilir (2014) also document that one of the industries with long product lifecycle length is
Fabricated Products. In our sample, this industry has medium AC. This fact aligns well with the hypothesis
that longer product lifecycles can lead to higher effectiveness of patents, and thereby to lower AC.

9Source: https://www.forbes.com/sites/gilpress/2017/01/15/steve-jobs-steals-from-xerox-to-battle-big-
brother-ibm/?sh=42f8064312e0

10Norman Bauman.Corporate Profile: Advanced Interventional Systems: Powerful Ex-
cimers, Flexible Fibers.Laser Medicine and Surgery News and Advances. Aug 1989.21-24.
http://doi.org/10.1089/lms.1989.7.4.21

11 https://gazette.com/business/spectranetics-survives-challenges-to-become-company-worth-nearly-1b/

article_8bf6e5a8-6a9a-5ff9-9fa1-c9a3a1f629be.html
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Interventional Systems’ medical device received approval from the U.S. Food and Drug Ad-

ministration before Spectranetics’ device. Spectranetics’ device was similar enough in design

and outcomes that the competitor sued Spectranetics for infringement of four of its patents.

Spectranetics later improved upon existing technology and medical research, published in

2004, accredited Spectanetics for these improvements.12 The firm was succesfully acquired

by Philips, which continues to manufacture modern ELCA equipment. Spectranetics has an

AC which is in the highest quintile in the last several years of our sample period, 2004-2006.

In the next section, we conduct a formal analysis of the effect of the absorptive capacity

channel on firm returns.

4 Methodology and Main Results

4.1 Portfolio Returns

In this subsection, we examine average returns on portfolios using information about a firm’s

absorptive capacity and size. As detailed above, AC is lagged (measured as of year t − 1)

while size is the market value of equity at the end of June of year t. The intersection

of quintile sorts on these two characteristics forms 25 AC-size portfolios. We hold these

portfolios over 12 months (July of year t to June of year t+ 1) and compute equal-weighted

(and value-weighted) monthly returns for each of the 25 portfolios (Hirshleifer, Hsu, and Li

(2013)).

Table 3 Panel A shows the average monthly portfolio return net of the one-month Trea-

sury bill rate (excess returns) for these portfolios. The excess returns on the portfolios

increase with AC, although this increase is not monotonic. Specifically, for the High AC-

Small size portfolio (highest quintile on AC, and lowest quintile on size) the average monthly

excess return is 190 basis points (t-state= 4.58) and the Low AC-Small size portfolio excess

return is 118 basis points (t-stat= 2.73).13 The spread between these two portfolios is 72

basis points (t-stat=3.96). Holding AC constant, we see that the spread between the largest

and smallest quintiles is always significantly positive except for the firms with lowest AC.

Table 3 Panel B shows the average monthly excess return for value-weighted portfolios.

The High AC-Small portfolio has an average of 218 basis points (t-stat=4.45), and the Low

12Bilodeau, L., Fretz, E. B., Taeymans, Y., Koolen, J., Taylor, K., and Hilton, D. J. (2004), 62(2), 155-161
13The greatest return by far is to the High AC-Small market capitalization portfolio. The natural short

against this would be to sell the Low AC-Big portfolio represented by the opposite corner of each panel
in Table 2. Panel A shows that the equal-weighted spread between these portfolios is 98 basis points
(t-stat=2.70). The analogous ‘diagonal’ spread in Panel B is 148 basis points (t-stat=2.73). For the value-
weighted portfolios this is comparable to the 140 basis points spread from High AC-Small portfolio minus
High AC-Big portfolio.
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AC-Big portfolio 70 basis points (t-stat=2.49). For the smallest firms,the spread between

High AC and Low AC is 132 basis points (t-stat=4.88). Note that in both Panel A and

Panel B the most attractive trade implied by the column or row spreads is long the High

AC-Small portfolio and short the High AC-Big portfolio. These spreads are 115 basis points

(t-stat=2.97) for the equal-weighted portfolios and 140 basis points (t-stat=2.40) for the

value-weighted portfolios.

The major takeaway from Table 3, and our main result, is that AC appears to forecast

returns. However, this effect is almost exclusively driven by the smallest quintile of firms.

Stocks characterized by high absorptive capacity in the past and that are also small out-

perform in the future. This is intriguing, albeit not surprising in light of our discussion of

returns to small innovators in the Introduction. Gaining a better understanding of these

firms will be the focus of the rest of the paper. Consequently, we will focus our analysis on

firms in the High AC, Small portfolio throughout the rest of the paper.

4.2 Fama-Macbeth Regressions

In this subsection, we examine the ability of AC to predict returns using monthly Fama-

Macbeth (1973) cross-sectional regressions. This analysis allows us to control for other firm

characteristics that can predict returns, to verify whether there is a positive relation between

high AC and stock returns.

Following Fama and French (1992), we impose a minimum six-month lag between stock

returns and the accounting variables to assure the full visibility of the accounting variables

to investors. Specifically, for each month from July of year t to June of year t+ 1, we regress

monthly returns for the firm minus the one-month Treasury bill rate on our main variable

of interest High AC * Small in the year t − 1, other control variables, and industry fixed

effects using the Fama and French (1997) 17 industry classifications.

High AC takes the value one if the firm is in the highest quintile of AC, and Small, is an

indicator variable which takes the value one if the firm is in the lowest size quintile. Other

control variables include lagged size(Size), book-to-market(BM ), ratio of R&D to market eq-

uity(RDME ), capital expenditure (CAPXME ), patenting intensity (PATME ), profitability

(ROA), asset growth (AG) and industry indicator variables based on the Fama and French

(1997) 17 industries. In separate specifications, we include Size in place of the variable Small

because these are based on market capitalization. We use alternative measures for capital

expenditure and patenting intensity, the ratio of capital expenditure to assets (CAPXAT ),

and the ratio of patents to total assets (PATAT ) respectively.

We include a short-term return reversal variable, defined as the firm’s stock return in
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the previous month (Reversal) (Jegadeesh and Titman (1993)), and a medium-term price

momentum variable defined as the firm’s stock return over the last twelve months excluding

the previous month’s return (Momentum) (Chan, Jegadeesh, and Lakonishok (1996)). We

also include illiquidity defined as the absolute value of the monthly stock return divided by

the monthly dollar trading volume (Illiquidity) (Amihud (2002)), and idiosyncratic volatility

defined as the standard deviation of the residual from a regression of daily stock returns in

excess of the risk-free rate on daily market returns in excess of the risk-free rate over the

previous twelve months (IVOL) (Ang, Hodrick, Xing and Zhang (2006)).

All independent variables are winsorized at the 1% and 99% level to reduce the impact

of outliers, and then they are all standardized (except indicator variables) to zero mean

and one standard deviation to facilitate the comparison of economic effects of all variables.

Cross-sectional regressions are run each calendar month and the standard errors, shown in

parentheses, are Newey and West (1987) adjusted using twelve lags, for heteroskedasticity

and auto-correlation.

Table 4, columns (1) to (3) report the main results. In all specifications, the slopes on

High AC * Small are positive and significant, ranging from 0.58% to 0.74%. With industry

fixed effects and including book-to-market as the only control variable, the coefficient on

High AC * Small is 0.737 with a t-statistic of 4.10, indicating that the average monthly

return spread of firms with High AC and small size is 73.7 basis points. In column (4)

we include book-to-market, log of R&D to market equity, capital expenditure, patenting

intensity, short-term reversal, and momentum. The coefficients on the control variables

are consistent with prior literature: size, capital expenditure, and reversal are negatively

correlated with future returns; book-to-market, R&D, patenting intensity, and momentum

are positively correlated with future returns. With these additional controls, the coefficient

on High AC * Small and the t-statistic decrease compared to column (3), but the coefficient

continues to be positive and statistically significant. In columns (5) and (6), we further

control for observables which are known to predict future returns. In column (5), we include

Illiquidity and IVOL. The coefficient of interest continues to be positive and statistically

significant. In column (6), we control for alternative measures of capital expenditure and

patenting intensity, and profitability and asset growth.14 We obtain similar results in this

specification. Small firms, that have high AC in the past, have higher future returns. After

controlling for known predictors of returns, we find that small firms with High AC have a

higher monthly return spread between 52.3 and 73.7 basis points.

14Comparing column (4) with column (5) and, especially, column (6) it appears that the effect of size
(without interaction with AC) on returns is driven by its negative correlation with IVOL. Once IVOL is
added to the regressions, the size coefficient is not significant.
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Existing literature has identified several linkages between firms within industry, and

documented the effects of these linkages on firm returns. To distinguish our absorptive

capacity effect from other industry-related effects, we consider several alternative measures

of industry linkages. Table 5 reports the results of controlling for these alternative industry-

linkage measures.

Moskowitz and Grinblatt (1999) document that industry returns can predict firm returns

over the short term; this phenomenon is strongest in the month immediately after portfolio

formation. In column (1), we control for lagged industry returns based on 2-digit SIC

code industries, to make sure that we are not rediscovering the industry momentum effect.

The coefficient on our variable of interest is 0.520%. Comparing these coefficients to the

coefficients in columns (4) to (6) in Table 4, reveals that the magnitude of the effect is

somewhat smaller, but its statistical significance is nearly unchanged when we include lagged

industry returns. In addition, the coefficient on industry returns is not significant in our

specification. In column (2), we control for supplier and customer returns (Menzly and

Ozbas (2010)), and in column (3) we control for pseudo-conglomerate returns (Cohen and Lou

(2012)). The coefficient on High AC * Small remains significant after controlling for return

predictability across the supply chain and for pseudo-conglomerate firms. The significantly

positive pseudo-conglomerate coefficient is consistent with the finding in Cohen and Lou

(2012) that complex firms earn a premium. In addition, the significantly positive High AC

* Small coefficient means that while High AC firms are complex, the High AC effect we

document is incremental to the complexity effect. The magnitude and significance of the

coefficients of High AC * Small are qualitatively the same as our main results (Table 4).

This indicates that the information firms acquire through learning via the AC channel is not

explained by information transferred within the industry or through the supply chain.

Finally, we show that our main results are unchanged after controlling for other docu-

mented effects of R&D. In column (4), we control for technological leaders, i.e., those firms

which have large investments in R&D, and peers, those firms which are technological fol-

lowers who do not have significant investments in R&D (Jiang et al. (2016)). We follow

Eberhart, Maxwell, and Siddique (2004), who find that large increases in firm R&D predict

positive future abnormal returns, to construct variables ∆RDlarget−1, and ∆RDlarget−5,

which reflect large increases in own R&D that took place in the previous year, and over the

previous five years, respectively. We control for large growth in R&D in the last year, and

over the last five years in columns (5) and (6), respectively. We find that our results for

absorptive capacity are unaffected by large changes in own-firm R&D. In each of these spec-

ifications, the coefficient of interest is similar in both magnitude and significance compared

to our main results. These results suggest that our measure of absorptive capacity provides
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information incremental to existing measures of R&D that have been used to predict stock

returns.

4.3 Other Robustness Tests

Our key specification relies on the interaction between size of the firm and its absorptive

capacity. We carry out a series of robustness tests varying the specification for size, AC and

other parameters in our main specification. In a first robustness test, we replace the variable,

Size with the indicator variable, Small. The results are reported in the Internet Appendix

Table IA.1. Our main result is qualitatively similar in magnitude and significance.

On a similar note, we investigate whether our result is robust to identifying small firms

using NYSE-based size break-points. We re-define small firms as those which lie in the

bottom market capitalization decile of the NYSE. We create an indicator variable, Small

NYSE which takes the value one if the firm is in the bottom decile in the June of year t and

hold this value for each month from July of year t to June of year t+1. Results are presented

in the Internet Appendix Table IA.2, columns (1) and (2). Our main result is robust to this

change of definition for small firm size.

Also in the Internet Appendix Table IA.2, we examine whether the return predictability

of small, high absorptive capacity firms varies across time. We divide our full sample into

two sub-periods, 1986 - 1995 and 1996 - 2006. We then repeat our baseline analysis from

Table 4 for each sub-period. Columns (3) and (4) report the results for the period 1986-

1995, and columns (5) and(6) report the results for the period 1996-2006. Our results hold

up well to this time disaggregation. The coefficients for High AC * Small are all positive

and statistically significant after controlling for various return determinants. The effect of

High AC on small firms is robust in both time periods.

We examine the sensitivity of our measure to variations in the specification used to

estimate AC. Results are presented in Table IA.3. In the first instance, we use an alternative

definition of Ln(Spilltech) as in equation 6. We use the average of the one to five year lags

of Ln(Spilltech) as the main independent variable. We estimate AC avg as the coefficient for

this average value. Columns (1) and (2) of Table IA.3 report the results. Our main result is

robust to this alternative definition of AC. In a second specification, we include all five lags

of Ln(Spilltech) in place of only one lag in equation 6. We estimate AC all as the average

of all five coefficients. Columns (3) and (4) of Table IA.3 report the results. In this case as

well, our main result is robust to this alternative specification.

The literature has documented a couple of alternative definitions of absorptive capacity.

Oh (2017) uses the ratio of own R&D stock to sales as a firm-level measure. Mancusi (2008)

21



calculates self-citations to patents at the industry-country level as a measure of absorptive

capacity. We provide a firm-level measure of absorptive capacity, and, therefore, we are able

to directly compare our measure with Oh (2017) to determine whether our measure provides

incremental information. As noted before, we include own R&D as a control variable in

our regression specification for calculation of AC. This inclusion addresses the concern that

we may be rediscovering the own R&D effect with our AC measure. To further refine this

analysis, we calculate RDC/Sale as the ratio of R&D stock, calculated using the perpetual

inventory method with a depreciation rate, δ = 20%, to sales (Oh (2017)). We include this

variable as a control in our main specification. Our main result is robust to this inclusion.

Moreover, the coefficient to the variable, RDC/Sale, is not significant in this specification,

which implies that our measure of absorptive capacity subsumes the alternative measure of

absorptive capacity.

Our results are sensitive to the inclusion of fixed effects, so we use several industry

classifications to create the industry fixed effects as alternatives to the Fama-French 17

industry classification presented in our main results. Table IA.4 reports the results. In

separate specifications, we use the Fama-French 12 industry, 30 industry, and the SIC 2-

digit industry classifications. In all these specifications, our main result continues to be

robust.

4.4 Real Outcomes: Patents and Citations

We have established that small market cap firms with high AC earn higher returns than

large firms or even small firms with low AC. Before turning to the question of whether these

returns are compensation for risk, we will briefly focus on the real outcomes associated with

the firms in the high AC, small size portfolio. Our objective is to assess the validity of

our AC estimates. The AC-return relation is robust, as shown above, but we have not yet

empirically established that AC is plausibly a substitute for a firm’s own R&D investment.

In particular, we want to see if the firms which we classify into the high AC and small size

portfolio produce the kinds of tangible results we would expect if they are in fact learning

via the AC channel.

There are two specific questions we will ask. First, does high AC eventually transform

into own R&D? Once a firm has successfully utilized its AC, and obtained higher returns,

it may be more likely to supplement its AC with its own in-house R&D program to protect

the market position it has acquired via AC. This may be especially true for smaller firms

and those in highly competitive industries. So, our first hypothesis is that i) high AC firms

should exhibit greater likelihood of own firm R&D investment in future periods. Second,
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does high AC manifest itself through more and better innovation? Successful R&D programs

should lead to measurably better outcomes. Thus, our second and third hypotheses are that

ii) high AC firms should generate more patents and iii) high AC firms should generate higher

quality patents (i.e., patents that generate more citations).

To examine the real effects, we explore patents and patent citations from the NBER US

Patent Citations Data File. Patents enable firms to build their intangible capital, and in-

crease or maintain their competitive advantage. Using patent citations, we are able to create

indicators of the importance of individual patents (Hall, Jaffe, and Trajtenberg (2001)), in

particular, citations are a proxy for patent quality. Our approach is based on a large, and

growing body of literature showing that patents, and patent citations are viable measures of

R&D “success” (Griliches (1981 and 1984), Pakes (1985), Jaffe (1986), Griliches, Pakes, Hall

(1987 and 1991), Connolly and Hirschey (1988), Hall (1993a and 1993b), Hall, Jaffe, and

Trajtenberg (2005), Cohen, Diether, and Malloy (2013), and Kogan, Papanikolaou, Seru,

and Stoffman (2017) among others).

Table 6 reports the results of annual Fama-Macbeth (1973) cross-sectional regressions to

test our three hypotheses. First, we evaluate whether firms with high AC and small size are

more likely to conduct R&D in the future. In columns (1) and (2), the dependent variable

is an indicator variable for positive R&D in the next year. We include indicator variables,

High AC * Small and High AC, as independent variables. We also include lagged size, book-

to-market ratio, and leverage as control ariables. We include industry fixed effects, based

on the Fama and French 17 industry classifications, where indicated. Note that High AC is

positive and significant in both specifications. Thus, our measure of AC is associated with

a greater likelihood of investing in R&D in the next year. In addition, High AC * Small, is

positive and significant in both specifications indicating that this likelihood is even greater

for small market capitalization firms.

We now turn to measurable innovative outcomes associated with AC, total patents and

total citations to those patents. In columns (3) and (4), the dependent variable is the natural

logarithm of (1+ patents). For each firm-year observation, we count the number of patents

applied for (and eventually granted) in the year. We use the application year, instead of

the grant year of the patent, as the relevant year because we are trying to estimate the

effect of learning on firm-level actions. By using the year of application, we are closer to

the actual year of firm action which is potentially related to firm-level learning. In both

specifications, columns (3) and (4), the coefficient of Size is positive. This result implies that

small firms patent less than large firms. More importantly, the coefficient of High AC * Small

is positive and significant indicating that small firms with high AC produce more patents in

the future. The coefficient estimate provided in column (4) indicates that in the year after a
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small firm achieves high AC, the number of patents increases by 50.7%. For the sub-sample

of small firms with high AC, this increase represents around 1.59 additional patents. To put

this change into perspective, we compare this number to the standard deviation of patents

for this subsample. We find that this increase in patents represents 6.93% of the standard

deviation of patents. The magnitude of this effect is large and economically significant.15

In columns (5) and (6), we use the total citations to all granted patents in the year.

The dependent variable is the natural logarithm of (1 + citations). We find that firms

with high absorptive capacity and small size also receive more citations on their patents,

as compared to other firms. Using the coefficient estimate as in column (6), we estimate

that citations increase by 49.6% in the consecutive year. For the sub-sample of small firms

with high AC, this increase amounts to 2.54 additional citations, which represents around

9.31% of the standard deviation of citations for this sub-sample. Again, this magnitude is

large and economically significant for these firms. Taken together, these results in columns

(3)-(6) suggest that firms which are good at learning from their counterparts R&D are able

to obtain tangible outcomes in the form of more patents and higher quality patents.

Table 6 confirms that our measure of AC is associated with the kind of real, measurable

outcomes we would expect if a firm is learning from other firms’ R&D. Firms with high AC

go on to act as if they have directly invested in R&D: they are more likely to invest in their

own R&D, they generate more accepted patent applications, and they generate more highly

cited patents.

5 Is Absorptive Capacity Mis-priced?

In Section 4 we documented that firms with High AC earn higher future returns. These higher

returns are primarily earned by firms in the smallest quintile of market value. Furthermore,

we showed that these returns are not a repackaging of previously documented connections

between returns and R&D expenditures, firm linkages, or firm characteristics.

To a first approximation, small firms with High AC appear to be underpriced. In the

next subsection, we consider whether this apparent underpricing is due to high AC firms

being riskier than low AC firms as suggested by Stoffman et. al. (2022). They conclude

that small innovators are more risky than small non-innovators. In particular, we examine

portfolio returns after accounting for standard risk factors and document the risk-adjusted

15The magnitude of the effect of country-level variables on firm patents has a wide variation. Atanassov
and Liu (2019) document that a change in taxes at the state level has an impact of patents which represents
1.2% to 1.4% of the standard deviation of patents. Several papers document that the impact of banking
deregulation in the US in the 1980s and 1990s on firm-level patenting varied between 9.7% and 23% (Chava
et al. (2013), Amore, Schneider and Zaldokas (2013), Cornaggia, Tian, Wolfe (2013))

24



returns for a high AC/Small size portfolio. In the subsequent subsection we examine the

correlation of our excess returns with several recently popularized short-horizon and long-

horizon mispricing factors. Specifically, we compare portfolios returns during periods of high

and low mis-pricing factor returns.

5.1 Risk Factors

In this subsection, we examine if the excess returns documented above are captured by

the standard set of empirical asset pricing models including the single-factor CAPM, the

Fama-French three-, four- , and five-factor models (Fama, and French (1993); Pastor and

Stambaugh (2003); Fama and French (2014)), the Carhart (1997) 4-factor model, and the q5

investment model (Hou et. al (2018)). Controlling for these factors, we can better understand

whether the higher returns earned by High AC, Small firms are compensation for some form

of risk captured by the standard risk-factor models. Table 7 Panel A reports the results

for risk-adjusted returns for the portfolios which are in the lowest and the highest quintiles

based on size.

In the first row, we report the excess returns for the 25-portfolios (as in Table 3 ). In the

next row, we use the risk factors in the CAPM model, in the third row, the Fama and French

(1993) 3-factor model, in the fourth row, the Carhart 4-factor model (Carhart (1997)), in

the fifth row, Fama and French (1993) 3-factor model and liquidity risk factor (Pastor and

Stambaugh 2003), in the subsequent row, the Fama-French 5-factor model (2015), and in

the final row, the q5 model (Hou et al 2018). The alphas for the High AC-Small portfolios

are always significantly positive with large t-statistics. However, the risk-models are able to

account for some of the large raw return alphas when AC is Low or when size is not Small.

In each row, the last column reports the High AC-Small minus High AC-Big spread.

This spread measures the incremental High AC alpha due to small market capitalization.

Column (7) reports the High AC-Small minus Low AC-Small spread. This spread measures

the incremental Small alpha due to High AC. The spreads are significantly positive with

large t-statistics for each of the risk-models and for both equal- and value-weighted portfolios

(Panel A and Panel B, respectively). The spread results reinforce our earlier findings. Small,

High AC firms earn higher future returns than either Big, High AC firms or Small, Low AC

firms.

The above analysis does not entirely rule out risk based explanations. However, the

results so far suggest that higher returns earned by High AC - Small firms cannot be explained

by standard risk factors alone.
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5.2 Mis-pricing Factors

Rather than pursue a potentially endless list of omitted risk factors, we directly employ

mispricing factors to assess if there is a correlation between measures of market sentiment and

the apparent undervaluation of small firms with High AC. Recently, three models have been

introduced which develop factors designed to capture time-variation in systematic mispricing:

the long and short horizon behavioral factors of Daniel, Hirshleifer and Sun (2020), the

performance and management mispricing factors of Stambaugh and Yuan (2017), and the

quality-minus-junk factor of Asness, Frazzini, and Pedersen (2019). We consider each of

these mispricing factors separately to better understand whether the returns earned by High

AC, Small firms are associated with periods of greater systematic mispricing.

The three papers create 5 mis-pricing factors. Three of the factors appear to capture

long-horizon mis-pricing while the other two appear to capture short-horizon mis-pricing.

Whether the apparent underpricing of AC is more likely to be a long-horizon or short-horizon

phenomenon is an open question. As we argue in the introduction, AC is a substitute for a

firms own R&D investment. As such, we would expect it to have long-horizon consequences

like direct R&D spending. On the other hand, we would expect most mis-pricing to be

short-horizon in nature. Therefore, the apparent underpricing of High AC-Small firms may

be more closely correlated with the short-horizon behavioral factors.

We begin by considering the two short-horizon factors. In Table 8 we document the

effect of short horizon or transient mis-pricing factors. Stambaugh and Yuan (2017) develop

two mis-pricing factors loosely clustered around performance related anomalies (PERF) that

dissipate quickly and management related anomalies (MGMT) that persist. We first divide

the sample based on the short-horizon mis-pricing factor PERF. We denote a month as high

(low) PERF if the value of the mis-pricing factor is above (below) the median. Columns (1)

and (2) document the results. When the value of PERF is high, the average monthly return

spread for high AC, small size firms is 40.5 basis points, and this spread is not statistically

significant from zero. When PERF is low, the average monthly return spread is 61.1 basis

points. The difference between the coefficients to High AC * Small in columns (1) and (2) is

not statistically significant. An F-test for the equality of coefficients is unable to reject the

null hypothesis. Similar to Stambaugh and Yuan (2017), Daniel, Hirshleifer and Sun (2020)

propose both a short- and a long-horizon behavioral factor. FIN is intended to capture mis-

pricing of a persistent nature while PEAD is formed to capture mis-pricing of a transient

nature. For our second test, we divide the sample based on the PEAD factor. We denote

a month as high (low) PEAD if the value of this mis-pricing factor is above (below) the

median. Columns (3) and (4) document the results. When the value of PEAD is high,the

average monthly return is 46.5 basis points for high AC, small size firms, and when PERF
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is low, this spread is 55.7 basis points. The difference between these coefficients is, also,

not statistically different from zero. For both short-horizon factors, the coefficient on High

AC*Small is significant and positive when the factor return is low. Moreover, although they

are not significantly different, the point estimates when the factor return is low are actually

greater than when they are high. We conclude that there is little evidence the higher returns

earned by the High AC-Small portfolio are explained by short-horizon mispricing.

In Table 9 we report the results using the factors designed to capture long-horizon mis-

pricing. Asness, Frazzini, and Pedersen (2019) create a quality-minus-junk factor, QMJ.

They provide evidence that the factor is related to analysts’ expectational errors and inter-

pret quality-minus-junk as capturing time variation in systematic mispricing. We denote a

month as high (low) QMJ if the QMJ factor in the month is above (below) median. Columns

(1) and (2) report the results. When the mispricing factor is high, the coefficient on High

AC * Small is 1.107 with a t-statistic of 4.64, indicating that the average monthly return

spread of firms with high AC and small size is 110.7 basis points. On the other hand, when

the mispricing factor is low, the average monthly returns spread of firms with high AC and

small size is -5.5 basis points. Another notable result is that the difference in these coeffi-

cients is also statistically significant from zero. An F-test testing the restriction of equality

in coefficients rejects the null at the 1% level. Next, we consider the long-horizon mis-pricing

factor from Stambaugh and Yuan (2017), MGMT. We denote a month as high (low) MGMT

if the the value of the factor in the month is above (below) median. Columns (3) and (4)

document the results. When MGMT is high, the average monthly return spread of firms

with high AC and small size is 109.1 basis points with a t-statistic of 5.02. When MGMT is

low, the average return spread for the same category of firms is negative. This spread is not

statistically different from zero. In the case of MGMT, the difference in coefficients for High

AC * Small between columns (3) and (4) are statistically significant. Finally, we use the

long-horizon mis-pricing factor from Daniel, Hirshleifer and Sun (2020), FIN. Columns (5)

and (6) document the results. We divide our sample into high FIN and low FIN analogous

to the procedure used for the other factors. When FIN is high, the average monthly return

spread of firms with high AC and small size is 105.3 basis points with a t-statistic of 4.21.

Taken together, the results in Table 9 suggest that the apparent under-valuation of High

AC, Small firms is related to longer-horizon mispricing in markets. On the other hand,

the results in Table 8 suggest little relation between this under-pricing and short-horizon

behavioral factors. We conclude that this evidence is consistent with the view that absorptive

capacity is similar in nature to other R&D investments. Therefore it is likely to have long-

term consequences and is also likely to be affected by managerial decisions which also appear

to be related to long-horizon mis-pricing.
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5.3 Mispricing around Earnings Announcements

In a previous section, we reported that well-known risk factors, such as the Fama-French

five factors and the momentum factor cannot explain our main result. Nevertheless, it is

still possible that unobserved risks could be driving our result. This would be the case if,

for example, the high AC of small firms is a proxy for changes in the firm’s discount rates,

which would then lead to changes in the firm’s expected returns. We carry out a test to

examine this possibility.

We examine stock price reactions around earnings announcements. This approach has

been widely used in the literature (LaPorta et al. (1997), Gleason and Lee(2003), Engelberg

et al (2018) among others). The idea is the following: if an anomaly is associated with

mispricing, then it will be stronger in the earnings announcement window, as the release of

these earnings helps to correct prior misconceptions about the firm’s expected cash flows.

To conduct this test, we follow Engelberg et al (2018). Our unit of observation is firm-

day and not firm-month. We regress daily stock return on High AC * Small, an earnings

announcement time window (EDAY ), and the interaction of these variables. We include

a set of control variables, lagged values for each of the past ten days stock returns, stock

returns squared, and trading volume (Lee et al. (2018)).

Table 10 reports the results. The earnings announcement window is defined as either the

one-day window (columns (1) and (2)) or a three-day window (columns (3) and (4)) centered

on the news release date. In all columns the coefficient is positive but significant only in

columns (3) and (4). Given that there is significant lack of information around small firms,

we would expect there to be some noise in the one-day estimation window. Consistent with a

mispricing explanation, returns to the High AC, small firms are much larger during earnings

announcement releases. In column (4), the coefficient for High AC * Small * EDAY is 0.220

and the coefficient for High AC * Small is 0.040. These results are very difficult to explain

based on a standard risk model.

6 Underlying Mechanisms

The results presented thus far indicate that investors under-react to information related to

the absorptive capacity of firms. A natural interpretation of underreaction is that investors

are either unwilling or unable to devote sufficient attention to valuing all assets and are,

therefore, slow to incorporate new information into prices. Alternatively, investors may

be paying full attention but face high transaction costs, i.e., they face limits to arbitrage

(D’Avolio, 2002; Asquith et. al., 2005; Stambaugh et. al., 2015). We investigate both
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under-reaction mechanisms: investor attention and limits to arbitrage. We recognize that

there is ambiguity in interpreting some proxies as underreaction or limited attention. We

will employ the most common categorizations in the analysis below.

We first examine whether high arbitrage costs are related to the relationship between

absorptive capacity of small firms and future returns. We use idiosyncratic volatility (IVOL),

firm age, and bid-ask spread as proxies for arbitrage costs. IVOL is the standard deviation

of the residual from a regression of daily stock returns in excess of the risk-free rate on

daily market returns in excess of the risk-free rate over the previous twelve months (Ang

et al. (2006)). Age is the number of years listed on Compustat with non-missing price

data. Bid-ask spread is measured as the difference between the bid and ask price divided by

the midpoint of the two prices. The high and low groups are split by the median value of

each respective measure (Bhardwaj and Brooks (1992), Lam and Wei (2011), and DeLisle,

Ferguson, Kassa, and Zaynutdinova (2021)).

In columns (1) and (2) of Table 11, we divide our sample into two groups based on the

median value of IVOL. The coefficient on the interaction term, High AC * Small is positive

and significant in column (1), but the same coefficient is not significant in column (2). Note

that high IVOL indicates higher arbitrage costs. Thus, the significant coefficient implies that

the effect of absorptive capacity on firm returns is amplified by higher costs of arbitrage.

Similarly, in columns (3) and (4), we divide our sample based on Age. The coefficient for the

interaction term is positive and significant for young firms, firms which are below the median

age in our sample. In columns (5) and (6), we divide our sample into two groups based on

the median bid-ask spread. In this case we find that the coefficient for the interaction term is

positive and significant for the group with high bid-ask spreads. Note that young firms and

firms with higher bid-ask spreads face higher trading costs. Taken together, these results

suggest that the under-valuation of absorptive capacity is amplified in the presence of larger

arbitrage costs.

Next, we focus on the effect of limited investor attention in the cross-section of firms.

Existing literature on limited attention argues that firm-specific information spreads slowly

for stocks with greater information asymmetry such as those with lower analyst coverage,

greater dispersion in forecasts by analysts, and lower institutional ownership (Hong and Stein

(1999), Hirshleifer and Teoh (2003), Hong et al. (2007), Hou (2007), Cohen and Frazzini

(2008)).

We test the limited attention channel by dividing our sample into groups based on the

proxies for limited attention - number of analysts covering the stock, the standard deviation

of the analyst estimates for the stock, and the percentage of institutional ownership. We use

Institutional Brokers’ Estimate System (I/B/E/S) to obtain data for the first two proxies.
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Analyst coverage is calculated as the average of the monthly number of analysts providing

fiscal year earnings forecasts for the stock in the previous year. Analyst dispersion is com-

puted as the average of the monthly standard deviation of earnings estimates for the stock in

the previous year, where the monthly standard deviation is the standard deviation divided

by the absolute value of the mean of analyst estimate. We exclude from the sample stocks

with zero dispersion, i.e. zero analyst or one analyst coverage. We use FactSet to obtain

data for institutional ownership. Institutional ownership is calculated as the percentage of

shareholding of the firm held by US funds, and reported in their 13-F filings. The high and

low groups are split by the median value of each respective measure.

Table 12 presents the results. Columns (1) and (2) show the results for our main spec-

ification for stocks which have low and high analyst coverage respectively. The coefficient

of the interaction variable, High AC * Small is positive and significant at the 5% level only

for the sample with low analyst coverage. Note that low analyst coverage indicates limited

investor attention. Columns (3) and (4) show the results for the subsamples with high and

low forecast dispersion respectively. In column (3), the coefficient of interest is positive and

significant. The coefficient of interest in column (4) is not significantly different from zero.

High forecast dispersion indicates limited investor attention. Columns (5) and (6) show the

results for the subsamples with high and low institutional ownership. The coefficient of

interest is positive and significant in the case of low institutional ownership.

These results suggest that higher absorptive capacity can lead to higher returns for small

firms which suffer from limited investor attention, such as those with low analyst coverage,

high dispersion in analyst forecasts, and low institutional ownership. The results in Tables

11 and 12 indicate that both limited investor attention and limits to arbitrage contribute to

the persistence of the underpricing of AC that we have identified.

7 Conclusion

Classically, what we typically think of as R&D investments (labs, market research, clinical

trials, research scientists, etc.) can generate new knowledge, information, and techniques.

These are investments made within the firm; but there is also an external dimension to

R&D through which the firm assimilates existing information produced by other firms to

generate new knowledge, information, and techniques. Just as firms vary in the degree to

which they invest along the internal R&D dimension, they also vary in the degree to which

they exploit the external dimension. This second aspect of R&D is relatively less researched

and, therefore, less well understood.

We focus on this external dimension of R&D, what we refer to as the firm’s absorptive
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capacity (AC): the ability to learn from other firms’ R&D investments. We argue that absorp-

tive capacity represents an important complement or, in some cases, simply an alternative

to direct R&D investment. As such, we think AC should have two types of effects. First,

within the firm, AC should produce future benefits akin to what we observe with internal

R&D. Namely, greater innovative output, like new patents, techniques, products, etc. over

a relatively long time horizon. Second, outside the firm, AC should be at least as difficult to

value as internal R&D investments. Thus, we would expect AC to appear to be undervalued

in much the same way that observed R&D investments appear to be undervalued.

We employ a new measure of AC based on total factor productivity (TFP) to study

the impact of absorptive capacity on equity returns. One of the key advantages of our

methodology is the fact that we control for the contribution of a firm’s own R&D to its

TFP. This allows us to differentiate between the impact of direct R&D investments and

absorptive capacity. In other words, we are able to isolate the incremental contribution of a

firm’s ability to utilize external knowledge. To our knowledge we are the first to utilize such

a measure in an asset pricing test.

The bulk of our analysis is focused on the external aspects of AC; that is, how does the

market value a firm’s absorptive capacity? We document return patterns that are consistent

with the prediction that the market undervalues AC similarly to how the market undervalues

direct R&D investment. Specifically, we find that stocks characterized by high AC in the

past and that are also small earn positive excess returns after controlling for standard risk

factors. However, the apparent underpricing of small, high AC firms is positively related

to long-horizon behavioural factors. We further find that our main result is significantly

stronger for firms subject to stricter limits to arbitrage and characterized by less investor

attention. Overall, our results are consistent with the innovation returns literature that

argues that innovation (and R&D in particular) is undervalued.

We also document real innovative outputs consistent with our prediction that absorptive

capacity should have similar effects to traditional R&D. First, we find that small firms with

high AC are more likely to invest in R&D in the future. More importantly, these firms

generate significantly more patents; and, these patents are of higher quality as evidenced by

the fact that they receive significantly more citations.

The real effects that we document have implications for R&D policy. The question of

whether and how R&D incentives can improve firm productivity and real outcomes such

as innovation is the continued focus of attention across several nations including the US.

Policymakers are often concerned about the negative implications of R&D spillovers. In

particular, the potential for reduced direct R&D investment if outside firms are also going to

benefit from the firm’s investments. However, our results show that it is important to also
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consider the positive real effects of R&D spillovers on other firms. Namely, the increases in

future R&D investment and higher quality innovations that arise from the external dimension

of R&D, absorptive capacity. These benefits, at least partially, offset the costs of reduced

direct investment due to fears of R&D spillovers.

32



References

Aldieri, L., Sena, V., & Vinci, C. P. (2018). Domestic R&D spillovers and absorptive ca-
pacity: Some evidence for US, Europe and Japan. International Journal of Production
Economics, 198, 38-49.

Amore, M. D., Schneider, C., and Zaldokas, A. (2013) Credit supply and corporate innova-
tion, Journal of Financial Economics 109, 835855.

Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Jour-
nal of financial markets, 5(1), 31-56.

Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The crosssection of volatility and
expected returns. The Journal of Finance, 61(1), 259-299.

Aronson, J. K., & Green, A. R. (2020). Me-too pharmaceutical products: History, defini-
tions, examples and relevance to drug shortages and essential medicines list. British Journal
of Clinical Pharmacology, 86(11), 2114-2122.

Asness, C. S., Frazzini, A., & Pedersen, L. H. (2019). Quality minus Junk. Review of Ac-
counting Studies, 24, 34-112.

Asquith, P., Mikhail, M. B., & Au, A. S. (2005). Information content of equity analyst
reports. Journal of financial economics, 75(2), 245-282.

Atanassov, J., and Liu, X. (2020) Can corporate income tax cuts stimulate innovation?,
Journal of Financial and Quantitative Analysis 55, 14151465.

Bhardwaj, R. K., & Brooks, L. D. (1992). The January anomaly: Effects of low share price,
transaction costs, and bidask bias. The Journal of Finance, 47(2), 553-575.

Bilodeau, L., Fretz, E. B., Taeymans, Y., Koolen, J., Taylor, K., & Hilton, D. J. (2004).
Novel use of a highenergy excimer laser catheter for calcified and complex coronary artery
lesions. Catheterization and cardiovascular interventions, 62(2), 155-161.

Bloom, N., Schankerman, M., & Van Reenen, J. (2013). Identifying technology spillovers
and product market rivalry. Econometrica, 81(4), 1347-1393.

Bondarev, A., & Greiner, A. (2018). Catching-up and falling behind: Effects of learning in
an R&D differential game with spillovers. Journal of Economic Dynamics and Control, 91,
134-156.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance,
52(1), 57-82.

33



Chalioti, E. (2019). Spillover feedback loops and strategic complements in R&D. Journal of
Public Economic Theory, 21(6), 1126-1142.

Chambers, D., Jennings, R., & Thompson, R. B. (2002). Excess returns to R&D-intensive
firms. Review of Accounting Studies, 7(2-3), 133-158.

Chan, L. K., Jegadeesh, N., & Lakonishok, J. (1996). Momentum strategies. The Journal
of Finance, 51(5), 1681-1713.

Chava, S., Oettl, A., Subramanian, A., and Subramanian, K. (2013) Banking deregulation
and innovation, Journal of Financial Economics 109, 759744.

Cohen, L., Diether, K., & Malloy, C. (2013). Misvaluing innovation. The Review of Finan-
cial Studies, 26(3), 635-666.

Cohen, L., & Frazzini, A. (2008). Economic links and predictable returns. The Journal of
Finance, 63(4), 1977-2011.

Cohen, L., & Lou, D. (2012). Complicated firms. Journal of Financial Economics, 104(2),
383-400.

Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: the two faces of R & D.
The Economic Journal, 99(397), 569-596.

Cohen, W. M., Nelson, R. R., &, J. P. (2000). Protecting their intellectual assets: Appropri-
ability conditions and why U.S. manufacturing firms patent (or not). NBER working paper
series, Working paper 7552

Connolly, R. A., & Hirschey, M. (1988). Market value and patents: A Bayesian approach.
Economics Letters, 27(1), 83-87.

Cornaggia, J., Mao, Y., Tian, X., and Wolfe, B. (2015) Does banking competition affect
innovation?, Journal of Financial Economics 115, 189 - 209.

DAvolio, G. (2002). The market for borrowing stock. Journal of financial economics, 66(2-
3), 271-306.

Daniel, K., Hirshleifer, D., & Sun, L. (2020). Short- and Long-Horizon Behavioral Factors .
Review of Financial Studies, 33, 1673-1736.

DeLisle, R. J., Ferguson, M. F., Kassa, H., & Zaynutdinova, G. R. (2021). Hazard stocks
and expected returns. Journal of Banking & Finance, 125, 106094.

Eberhart, A. C., Maxwell, W. F., & Siddique, A. R. (2004). An examination of longterm
abnormal stock returns and operating performance following R&D increases. The Journal

34



of Finance, 59(2), 623-650.

Engelberg, J., McLean, R. D., & Pontiff, J. (2018). Anomalies and news. The Journal of
Finance, 73(5), 1971-2001.

Fama, E. F., & French, K. R. (1992). The crosssection of expected stock returns. the Journal
of Finance, 47(2), 427-465.

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics, 33, 3-56.

Fama, E. F., & French, K. R. (1997). Industry costs of equity. Journal of financial eco-
nomics, 43(2), 153-193.

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial
Economics, 116(1), 1-22.

Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests.
Journal of political economy, 81(3), 607-636.

Ganuza, J-J, Llobet, G., & Dominguez, B. (2009). R&D in the pharmaceutical industry: A
world of small innovations. Management Science, 55(4), 539-551.

Gilbert, R. J., & Katz, M. L. (2001). An economist’s guide to US v. Microsoft. Journal of
Economic perspectives, 15(2), 25-44.

Gleason, C. A., & Lee, C. M. (2003). Analyst forecast revisions and market price discovery.
The Accounting Review, 78(1), 193-225.

Glitz, A., & Meyersson, E. (2020). Industrial espionage and productivity. American Eco-
nomic Review, 110(4), 1055-1103.

Griliches, Z. (1981). Market value, R&D, and patents. Economics letters, 7(2), 183-187.

Griliches, Z. (1984). Introduction to” R&D, Patents, and Productivity”. In R&D, Patents,
and Productivity (pp. 1-20). University of Chicago Press.

Griliches, Z., Pakes, A., & Hall, B. H. (1987). The value of patents as indicators of economic
activity. Economic Policy and Technological Performance.

Griliches, Z., Hall, B. H., & Pakes, A. (1991). R&D, patents, and market value revisited: is
there a second (technological opportunity) factor?. Economics of Innovation and new tech-
nology, 1(3), 183-201.

35



Gu, F. (2005). Innovation, future earnings, and market efficiency. Journal of Accounting,
Auditing & Finance, 20(4), 385-418.

Hall, B. H. (1993). R&D tax policy during the 1980s: success or failure?. Tax Policy and
the Economy, 7, 1-35.

Hall, B. H. (1993). The stock market’s valuation of R&D investment during the 1980’s. The
American Economic Review, 83(2), 259-264.

Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER patent citation data file:
Lessons, insights and methodological tools.

Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND
Journal of economics, 16-38.

Hirshleifer, D., Hsu, P. H., & Li, D. (2013). Innovative efficiency and stock returns. Journal
of Financial Economics, 107(3), 632-654.

Hirshleifer, D., Hsu, P. H., & Li, D. (2018). Innovative originality, profitability, and stock
returns. Review of Financial Studies, 31(7), 2553-2605.

Hirshleifer, D., & Teoh, S. H. (2003). Limited attention, information disclosure, and finan-
cial reporting. Journal of Accounting and Economics, 36(1-3), 337-386.

Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum trading, and
overreaction in asset markets. The Journal of Finance, 54(6), 2143-2184.

Hong, H., Torous, W., & Valkanov, R. (2007). Do industries lead stock markets?. Journal
of Financial Economics, 83(2), 367-396.

Hou, K. (2007). Industry information diffusion and the lead-lag effect in stock returns. The
Review of Financial Studies, 20(4), 1113-1138.

Hou, K., Mo, H., Xue, C., & Zhang, L. (2019). Which factors?. Review of Finance, 23(1),
1-35.
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Figure 1: Absorptive Capacity across Industries

The panel plots the median absorptive capacity (AC) across all firms in the industry for each
year in our sample for two industries, Drugs and Textiles. The sample consists of non-financial
and non-utility firms with at least one granted patent applied between years 1970 and 2006. The
sample includes firms with returns from July 1986 to December 2006. The top line plots the median
AC across all firms in the Drugs industry and the bottom line for the Textiles industry. Industry
classification is based on Fama-French 17 industry classification.
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Table 1: Summary statistics

The sample consists of non-financial and non-utility firms with at least one granted patent with an
application date between years 1970 and 2006. The sample includes firms with returns from July
1986 to December 2006. At the end of June of year t, we divide firms into five absorptive capacity
(AC) groups based on AC twelve months ago by the 20th, 40th, 60th, and 80th percentiles. Panel
A presents the summary statistics by the AC groups. AC is absorptive capacity, Ln(TFP) is the
natural logarithm of total factor productivity, and Spilltech is technological spillover pool for each
firm-year as defined in Section 3.1. Size is the natural logarithm of market capitalization of the
firm in $ million. BM is the logarithm of the book-to-market ratio for fiscal year ending in calendar
year t-1 divided by market equity at the end of December for t-1. RDME is R&D expenditure
divided by year-end market equity. All other variables are as defined in Table A.1. Panel B reports
the annual persistence in a firms AC quintile for lags of 1 to 5 years.

Panel A: Summary Statistics

AC quintiles

Variable Low 2 3 4 High

Number of firms 183 184 184 184 184

Excess Return 0.99 0.96 0.90 0.89 1.07

AC -4.45 -0.74 -0.11 0.51 4.09

Ln(TFP) -0.24 -0.20 -0.12 -0.05 -0.05

Spilltech 0.59 0.59 0.61 0.63 0.61

Size 5.55 5.92 6.34 6.40 5.98

BM -0.47 -0.48 -0.61 -0.68 -0.68

RDME 0.05 0.04 0.03 0.03 0.05

PATME 0.01 0.01 0.01 0.01 0.01

CAPXME 0.09 0.09 0.09 0.08 0.08

Reversal 1.29 1.25 1.25 1.24 1.32

Momentum 1.47 1.35 1.33 1.41 1.56

Illiquidity 0.09 0.07 0.05 0.05 0.06

IVOL 0.03 0.03 0.02 0.02 0.03

CAPXAT 0.06 0.06 0.06 0.07 0.06

PATAT 0.01 0.01 0.01 0.01 0.01

ROA 0.07 0.10 0.12 0.13 0.13

AG 0.07 0.08 0.10 0.14 0.16

Panel B: Mean Annual Persistence in Ability

Lag Low 2 3 4 High

1 0.54 0.48 0.47 0.50 0.56

2 0.33 0.33 0.34 0.34 0.35

3 0.23 0.24 0.26 0.26 0.24

4 0.17 0.19 0.22 0.21 0.18

5 0.13 0.16 0.19 0.17 0.13
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Table 2: AC and Spilltech by Industry

The sample consists of non-financial and non-utility firms with at least one granted patent with an
application date between years 1970 and 2006. The sample includes firms with returns from July
1986 to December 2006. For each industry, Fama-French 17 industry classification, (column (1)),
we report the median number of firm-years and summary statistics (columns (2) to (4)) for AC in
the first row and for Spilltech in the second row.

Industry N 25th Median 75th
percentile percentile

Food 862 -0.54 0.09 0.61
0.15 0.23 0.36

Mining and Minerals 226 -1.54 -0.43 0.63
0.14 0.26 0.59

Oil and Petroleum 786 -1.58 -0.36 0.91
0.12 0.32 0.57

Textiles 682 -0.73 -0.24 0.25
0.01 0.11 0.33

Consumer Durables 1103 -1.02 -0.15 0.79
0.09 0.19 0.52

Chemicals 719 -1.04 -0.19 0.57
0.37 0.77 1.10

Drugs 1030 -0.61 0.06 0.82
0.43 0.75 1.26

Construction and Materials 926 -0.73 -0.14 0.52
0.12 0.30 0.58

Steel Works 488 -1.11 -0.14 0.67
0.16 0.42 0.70

Fabricated Products 435 -0.79 -0.12 0.55
0.22 0.37 0.59

Machinery and Bus. Equipment 5435 -1.07 -0.14 0.92
0.30 0.59 1.02

Automobiles 549 -0.65 -0.06 0.57
0.34 0.63 0.98

Transportation 570 -0.87 -0.17 0.50
0.12 0.54 1.07

Retail Stores 545 -0.42 -0.09 0.28
0.05 0.13 0.37

Other 5318 -0.94 -0.13 0.71
0.24 0.47 0.7641



Table 3: Excess returns for equal- and value- weighted portfolios

This table reports the excess returns and adjusted returns for equal-weighted portfolios sorted on
size and absorptive capacity. Panel A reports the average monthly portfolio return net of the
one-month Treasury bill rate (excess return) for equal-weighted portfolios. Panel B presents the
average monthly excess return for value-weighted portfolios. Spread (HML) is the difference in
returns (or the long-short portfolio spread) between the high AC and low AC portfolios, within a
Size group. Spread (SMB) is the difference in returns between the Small and Big portfolios, within
an AC quintile. All standard errors are in parentheses and are calculated using Newey and West
(1987) adjusted standard errors with twelve lags.

AC quintile

Size Quintile Low 2 3 4 High Spread (HML)

Panel A: Equal weighted portfolios

Small 1.180*** 1.594*** 1.191*** 1.319*** 1.896*** 0.715***
(0.432) (0.400) (0.326) (0.381) (0.414) (0.181)

2 1.122*** 1.09*** 1.203*** 1.093*** 0.847** -0.275
(0.35) (0.359) (0.298) (0.337) (0.345) (0.202)

3 0.678** 0.728** 0.896*** 0.771** 1.038*** 0.360***
(0.283) (0.302) (0.29) (0.319) (0.298) (0.145)

4 0.949*** 0.706*** 0.797*** 0.715** 1.024*** 0.075
(0.303) (0.242) (0.241) (0.284) (0.301) (0.137)

Big 0.912*** 0.806*** 0.729*** 0.685*** 0.747** -0.165
(0.270) (0.208) (0.233) (0.214) (0.288) (0.129)

Spread (SMB) 0.269 0.788*** 0.462* 0.633** 1.148***
(0.396) (0.326) (0.359) (0.315) (0.386)

Panel B: Value weighted portfolios

Small 0.864** 1.652*** 1.11*** 1.157*** 2.182*** 1.317***
(0.434) (0.478) (0.346) (0.368) (0.490) (0.270)

2 1.081*** 0.958*** 1.309*** 1.173*** 0.869** -0.212
(0.346) (0.362) (0.276) (0.380) (0.414) (0.281)

3 0.680** 0.615** 0.846*** 0.686** 1.042*** 0.361**
(0.319) (0.298) (0.279) (0.326) (0.315) (0.182)

4 0.900*** 0.738*** 0.632*** 0.731*** 0.887*** -0.013
(0.300) (0.232) (0.237) (0.272) (0.330) (0.181)

Big 0.700** 0.536** 0.562* 0.713*** 0.783** 0.083
(0.281) (0.232) (0.303) (0.263) (0.362) (0.206)

Spread (SMB) 0.164 1.116*** 0.548 0.445 1.400***
(0.437) (0.437) (0.480) (0.379) (0.582)
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Table 4: Fama-MacBeth Regressions

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July
of year t to June of year t+1 on AC and Size. High AC is an indicator which takes the
value one if the AC of the firm is in the highest quintile in year t-1, and zero otherwise.
Small is an indicator variable which takes the value one if the firm is in the lowest quintile
based on Size, the market value of equity at the end of June of year t, and zero otherwise.
All other variables are as defined in Table A.1. Some specifications include industry fixed
effects using the 17-industry classification based on Fama and French (1997). All continuous
variables are Winsorized at the 1% and 99% levels and are normalized to have a mean of
zero and standard deviation of 1. Newey and West (1987) adjusted standard errors using
twelve month lags are shown in parentheses. Statistical significance at the 1%, 5% and 10%
levels is denoted by ***, **, and *.

Excess returns

(1) (2) (3) (4) (5) (6)

High AC * Small 0.578*** 0.724*** 0.737*** 0.591*** 0.560*** 0.523***
(0.206) (0.201) (0.179) (0.168) (0.173) (0.175)

High AC 0.041 0.000 -0.018 -0.080 -0.150 -0.104
(0.112) (0.109) (0.096) (0.099) (0.098) (0.097)

Small 0.468**
(0.191)

Size -0.188* -0.152 -0.226** -0.144 -0.118
(0.106) (0.094) (0.095) (0.112) (0.106)

BM 0.09 0.008 0.015 0.038
(0.080) (0.088) (0.084) (0.088)

RDME 0.203** 0.179** 0.172**
(0.100) (0.087) (0.084)

PATME 0.059 0.062
(0.044) (0.041)

CAPXME -0.017 -0.013
(0.049) (0.053)

Reversal -0.095 -0.106 -0.124
(0.076) (0.077) (0.078)

Momentum 0.117 0.091 0.082
(0.103) (0.098) (0.099)

Illiquidity -0.055 -0.050
(0.099) (0.113)

IVOL 0.163 0.220*
(0.128) (0.125)

PATAT 0.026
(0.057)

CAPXAT 0.072**
(0.035)

ROA 0.099
(0.062)

AG -0.221***
(0.040)

Industry FE No No Yes Yes Yes Yes

Observations 219,839 219,839 207,390 196,158 177,467 176,386
R-squared 0.014 0.019 0.064 0.090 0.103 0.112
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Table 5: Fama-MacBeth Regressions: Controlling for alternative measures of firm linkages,
and R&D effects

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July of year t to June
of year t+1 on AC and Size controlling for other economic linkages, and other R&D effects. High AC is
an indicator which takes the value one if the AC of the firm is in the highest quintile in year t-1, and zero
otherwise. Small is an indicator variable which takes the value one if the firm is in the lowest quintile based
on Size, the market value of equity at the end of June of year t, and zero otherwise. Industry Return is the
lagged monthly value-weighted average returns of an individual stock’s 2-digit SIC industry (Moskowitz and
Grinblatt (1999)). Customer Return is the lagged returns of a firm’s portfolio of customers and Supplier
Return is the lagged returns of a firm’s portfolio of suppliers following Menzly and Ozbas (2010). Psuedo-
conglomerate Return is the returns from a portfolio of pure play firms that collectively span an individual
firm’s lines of business, weighted by the industry segment’s sales contribution to the focal firm (Cohen and
Lou (2012)). Leader and Peer indicators are constructed following Jiang et al. (2016). Leader is an indicator
variable which takes the value of one if a firm is an R&D leader that experiences R&D-to -sales and -assets
greater tha 2%, within an industry year that experiences an aggregate R&D growth greater than 20%, and
zero otherwise. Peer an indicator equal to one if a firm is not a leader within an industry that experiences
an aggregate R&D growth during the current or the previous three years. ∆RDlarget−1 (∆RDlarget−5) is
an ndicator for large R&D increases, which takes the value one if R&D expenditure increased by 5%, R&D
expenditure divided by lagged total assets is greater than 5% and if R&D change divided by lagged assets
is greater than 5% last year. For t-5, if the conditions are met for the average values over the previous 5
years (Eberhart, Maxwell, and Siddique (2004)). Other controls refer to variables defined in Table 4. Some
specifications include industry fixed effects using the 17-industry classification based on Fama and French
(1997). All continuous variables are Winsorized at the 1% and 99% levels and are normalized to have a mean
of zero andstandard deviation of 1. Newey and West (1987) adjusted standard errors using twelve month
lags are shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **,
and *.

Excess returns

(1) (2) (3) (4) (5) (6)

High AC * Small 0.520*** 0.508*** 0.518*** 0.481*** 0.498*** 0.497***
(0.175) (0.176) (0.173) (0.170) (0.170) (0.171)

High AC -0.084 -0.083 -0.081 -0.071 -0.089 -0.090
(0.097) (0.097) (0.097) (0.101) (0.095) (0.096)

Size -0.087 -0.082 -0.081 -0.093 -0.117 -0.117
(0.100) (0.099) (0.101) (0.100) (0.107) (0.107)

Industry Return 0.070 0.059 0.056
(0.081) (0.079) (0.082)

Customer Return 0.075
(0.049)

Supplier Return -0.003
(0.034)

Pseudo-conglomerate Return 0.112**
(0.055)

Leader 0.409
(0.473)

Peer 0.121
(0.119)

∆RDlarget−1 0.050
(0.079)

∆RDlarget−5 -0.010
(0.078)

Other controls Yes Yes Yes Yes Yes Yes
Industry FE No No No No Yes Yes

Observations 173,476 173,476 173,476 173,476 173,079 173,079
R-squared 0.080 0.083 0.082 0.080 0.111 0.111
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Table 6: Real Outcomes: Patents, Citations and R&D

This table reports annual Fama-Macbeth (1973) regressions of measures of innovation output on
Absorptive capacity and size. High AC is an indicator which takes the value one if the AC of the
firm is in the highest quintile and zero otherwise, Small is an indicator variable which takes the
value one if the firm is in the lowest quintile based on size, and zero otherwise. Some specifications
include industry fixed effects using the 17-industry classification based on Fama and French (1997).
Has R&D is an indicator variable which takes the value one if the firm has non-zero, positive R&D
expenses. Ln(1+ Patents) is the natural logarithm of one plus the number of granted patents
applied for by the firm in the current year. Ln(1+ Citations) is the natural logarithm of one plus
the number of citations received by granted patents applied for by the firm in the current year.
Newey and West (1987) adjusted standard errors using one-month lags are shown in parentheses.
Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **, and *.

Has R&D Ln(1+Patents) Ln(1+Citations)

(1) (2) (3) (4) (5) (6)

High AC * Small 0.051** 0.060*** 0.367*** 0.410*** 0.361*** 0.403***
(0.023) (0.019) (0.063) (0.051) (0.088) (0.067)

High AC 0.070*** 0.035*** 0.024 -0.045 0.118* 0.030
-0.017 (0.015) (0.043) (0.040) (0.057) (0.057)

Size -0.011* 0.010** 0.475*** 0.524*** 0.535*** 0.601***
(0.006) (0.005) (0.008) (0.008) (0.018) (0.017)

BM -0.099*** -0.056*** 0.072 0.155*** -0.068 0.069
(0.021) (0.015) (0.050) (0.037) (0.057) (0.051)

Leverage -0.082*** -0.054*** 0.006 0.063*** -0.157*** -0.065**
(0.007) (0.004) (0.021) (0.017) (0.030) (0.023)

Industry FE No Yes No Yes No Yes

Observations 16,694 16,694 16,694 16,694 16,687 16,687
R-squared 0.043 0.239 0.322 0.400 0.268 0.343
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Table 7: Risk-adjusted portfolio returns

This table reports the risk-adjusted returns for portfolios based on size and absorptive capacity. Panel A reports the excess
return and the alphas for CAPM, Fama and French (1993) three-factor model, Carhart model, Fama and French three-factor
with liquidity factor (Pastor and Stambaugh 2003), Fama and French five-factor model (2014), and the q5 model (Hou et al
2018). Excess return is the portfolio return minus risk-free. Panel B reports the excess returns and alphas for value-weighted
portfolios. All standard errors in parentheses are Newey and West (1987) adjusted standard errors using twelve lags.

Small size High AC

AC Low 2 3 4 AC High Spread (HML) Size Small 2 3 4 Size Big Spread (SMB)

Panel A: Equal-weighted portfolio

Raw return 1.180*** 1.594*** 1.191*** 1.319*** 1.896*** 0.715*** 1.896*** 0.847** 1.038*** 1.024*** 0.747** 1.148***

(0.432) (0.400) (0.326) (0.381) (0.414) (0.181) (0.414) (0.345) (0.298) (0.301) (0.288) (0.386)

CAPM Alpha 0.728* 1.133*** 0.743* 0.783** 1.34*** 0.611*** 1.34*** 0.186 0.316 0.237 0.01 1.330***

(0.419) (0.371) (0.38) (0.344) (0.380) (0.188) (0.380) (0.267) (0.265) (0.239) (0.118) (0.390)

3-factor Alpha 0.371 0.84*** 0.537** 0.516** 1.177*** 0.806*** 1.177*** -0.008 0.141 0.213 0.156 1.021***

(0.229) (0.285) (0.235) (0.250) (0.217) (0.178) (0.217) (0.153) (0.117) (0.198) (0.123) (0.253)

4-factor Alpha 0.441* 1.02*** 0.536** 0.643** 1.35*** 0.909*** 1.35*** 0.16 0.297** 0.494** 0.355*** 0.995***

(0.237) (0.295) (0.242) (0.263) (0.234) (0.177) (0.234) (0.170) (0.123) (0.210) (0.136) (0.255)

FF3 + Liq. Alpha 0.418* 0.901*** 0.529** 0.528** 1.139*** 0.722*** 1.139*** -0.029 0.135 0.183 0.114 1.025***

(0.234) (0.286) (0.236) (0.257) ’(0.208) (0.178) (0.208) (0.149) (0.117) (0.189) (0.112) (0.248)

5-factor Alpha 0.338 0.703** 0.481* 0.553** 1.153*** 0.815*** 1.153*** -0.058 0.111 0.186 0.291* 0.862***

(0.238) (0.282) (0.251) (0.250) (0.232) (0.208) (0.232) (0.181) (0.130) (0.224) (0.169) (0.223)

q5 Alpha 0.361 0.723* 0.455 0.683* 1.236*** 0.875*** 1.236*** 0.057 0.172 0.266 0.383* 0.853***

(0.295) (0.382) (0.303) (0.406) (0.308) (0.254) (0.308) (0.222) (0.159) (0.259) (0.225) (0.294)
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Table 7 – Continued
Small size High AC

AC Low 2 3 4 AC High Spread (HML) Size Small 2 3 4 Size Big Spread (SMB)

Panel B: Value-weighted portfolio

Raw return 0.864** 1.652*** 1.11*** 1.157*** 2.182*** 1.317*** 2.182*** 0.869** 1.042*** 0.887*** 0.783** 1.400***

(0.434) (0.478) (0.346) (0.368) (0.490) (0.270) (0.490) (0.414) (0.315) (0.330) (0.362) (0.582)

CAPM Alpha 0.409 1.159** 0.672* 0.589* 1.61*** 1.201*** 1.61*** 0.184 0.325 0.101 0.096 1.514***

(0.429) (0.469) (0.404) (0.331) (0.504) (0.286) (0.504) (0.348) (0.235) (0.217) (0.180) (0.600)

3-factor Alpha 0.062 0.962*** 0.482* 0.386 1.468*** 1.407*** 1.468*** 0.093 0.185 0.084 0.413*** 1.055***

(0.239) (0.367) (0.264) (0.250) (0.312) (0.280) ’(0.312) ’(0.256) ’(0.135) ’(0.177) ’(0.109) ’(0.336)

4-factor Alpha 0.090 0.921*** 0.403 0.386 1.461*** 1.371*** 1.461*** 0.141 0.270* 0.235 0.456*** 1.005***

(0.252) (0.342) (0.276) (0.263) (0.291) (0.267) (0.291) (0.274) (0.149) (0.176) (0.148) (0.324)

FF3 + Liq. Alpha 0.468** 1.397*** 0.857*** 0.775*** 1.773*** 1.304*** 1.773*** 0.46* 0.565*** 0.443** 0.769*** 1.004***

(0.220) (0.377) (0.258) (0.241) (0.298) (0.266) (0.298) (0.275) (0.153) (0.181) (0.110) (0.327)

5-factor Alpha -0.025 0.775** 0.411 0.38 1.376*** 1.402*** 1.376*** 0.075 0.153 0.055 0.584*** 0.792***

(0.250) (0.345) (0.280) (0.255) (0.293) (0.297) (0.293) (0.243) (0.145) (0.177) (0.131) (0.302)

q5 Alpha -0.011 0.634* 0.424 0.502 1.242*** 1.253*** 1.242*** 0.033 0.109 0.007 0.500*** 0.742**

(0.300) (0.382) (0.336) (0.362) (0.310) (0.340) (0.310) (0.210) (0.137) (0.183) (0.171) (0.342)
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Table 8: Short-Horizon Mispricing Factors

This table reports monthly Fama-Macbeth (1973) regressions of returns on absorptive capacity and size
within subsamples divided into periods of high and low spreads between underpriced and overpriced stocks
represented by the short-horizon mispricing factors. PERF is constructed by applying a 2 by 3 sorting pro-
cedure on size and the averaging rankings within a cluster of anomalies (distress, O-score, momentum, gross
prfitability and return on assets), which are related more to performance and less controlled by manage-
ment (Stambaugh and Yuan (2017)). Specifically, two size portfolios are sorted based on the NYSE median
breakpoint each month and three portfolios are sorted based on the 20th and 80th percentiles of the average
rank of the short-horizon anomaly cluster. Value-weighted portfolio returns are found for the four portfolios
formed by the intersection of the two size categories with the top and bottom categories for the anomaly
cluster. PERF is calculated as the simple average of the returns on the two low portfolios (underpriced
stocks) minus the average of the returns on the high portfolios(overpriced stocks). PEAD is similarly con-
structed based on a 2 by 3 sorting on size and 4-day cumulative abnormal return around the most recent
quarterly announcement date. Two size portfolios are sorted based on the NYSE median breakpoint each
month and three portfolios are sorted based on the 20th and 80th percentiles of cumulative abnormal return
for NYSE firms. Value-weighted portfolios returns are calculated for the portfolios formed on the intersection
of small and big size groups and the high and low earnings surprise portfolios. PEAD is then calculated as
the average return of the high earnings surprise portfolios minus the average of the low earnings portfolios.
Some specifications include industry fixed effects using the 17-industry classification based on Fama and
French (1997). All continuous variables are winsorized at the 1% and 99% levels and normalized to have a
mean of zero and standard deviation of 1 . Newey and West (1987) adjusted standard errors using twelve
month lags are shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by
***, **, and *.

PERF PEAD

High Low High Low
(1) (2) (3) (4)

High AC * Small 0.405 0.611** 0.465* 0.557*
(0.314) (0.280) (0.252) (0.301)

High AC -0.259 -0.033 -0.090 -0.197
(0.193) (0.171) (0.125) (0.178)

Size -0.217 -0.090 -0.229 -0.075
(0.197) (0.124) (0.196) (0.104)

BM -0.049 0.073 -0.116 0.143**
(0.133) (0.092) (0.136) (0.070)

RDME 0.292** 0.080 0.364** 0.002
(0.129) (0.099) (0.156) (0.086)

PATME 0.070 0.056 0.060 0.066
(0.053) (0.048) (0.042) (0.054)

CAPXME -0.178** 0.145** -0.085 0.059
(0.080) (0.058) (0.087) (0.058)

Reversal 0.171*** -0.365** 0.110 -0.317**
(0.059) (0.149) (0.076) (0.147)

Momentum 0.568*** -0.362*** 0.270* -0.089
(0.101) (0.132) (0.153) (0.109)

Illiquidity -0.087 -0.014 0.031 -0.130
(0.127) (0.125) (0.134) (0.173)

IVOL -0.076 0.391* 0.226 0.101
(0.246) (0.210) (0.203) (0.142)

Industry FE Yes Yes Yes Yes

Observations 86,100 91,367 88,842 88,625
R-squared 0.104 0.102 0.101 0.105
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Table 9: Long-Horizon Mispricing Factors

This table reports monthly Fama-Macbeth (1973) regressions of returns on absorptive capacity and size
within subsamples divided into periods of high and low spreads represented by long-horizon mispricing
factors. QMJ is constructed by sorting on size and quality, where quality is a composite score representing
subcomponents of profitability, growth, and safety. At the end of each month, six value-weighted portfolios
are formed by first sorting on size based on the median NYSE market equity and then on quality within size.
QMJ is the average return on the two high-quality portfolios minus the average return on the two low-quality
portfolios. MGMT is constructed by applying a 2 by 3 sorting procedure on size and the averaging rankings
within a cluster of anomalies (net stock issues, composite equity issues, accruals, net operating assets, asset
growth, and investment to assets), which reflect quantities that firms’ management can affect (Stambaugh
and Yuan (2017)). Specifically, two size portfolios are sorted based on the NYSE median breakpoint each
month and three portfolios are sorted based on the 20th and 80th percentiles of the average rank of the long-
horizon anomaly cluster. Value-weighted portfolio returns are found for the four portfolios formed by the
intersection of the two size categories with the top and bottom categories for the anomaly cluster. MGMT
is calculated as the simple average of the returns on the two low portfolios (underpriced stocks) minus the
average of the returns on the high portfolios(overpriced stocks). FIN represents attempts by management
to arbitrage misprcing via issuance/repurchase activities as represented by 1-year net share issuance (NSI)
and 5-year composite share issuance (CSI) (Daniel, Hirshleifer, and Sun (2020)). If a firm belongs to high
(low) NSI and/or CSI ranking it is defined as a high (low) financing group. High and low financing groups
are interacted by size groups sorted on the median NYSE breakpoint at the end of June of year t. Value-
weighted portfolio returns are calculated for each month from July of year t to June of year t+1. FIN is
calculated each month as the average return of the low financing portflios minus average return of the high
financing portfolios. All subsamples are divided by the respective factor each month as high (low) if it is
above (below) median. Some specifications include industry fixed effects using the 17-industry classification
based on Fama and French (1997). All continuous variables are winsorized at the 1% and 99% levels and
normalized to have a mean of zero and standard deviation of 1 . Newey and West (1987) adjusted standard
errors using twelve month lags are shown in parentheses. Statistical significance at the 1%, 5% and 10%
levels is denoted by ***, **, and *.

QMJ MGMT FIN

High Low High Low High Low

(1) (2) (3) (4) (5) (6)

High AC * Small 1.107*** -0.055 1.091*** -0.040 1.053*** -0.013

(0.238) (0.320) (0.217) (0.245) (0.250) (0.261)

High AC -0.495*** 0.191 -0.623*** 0.313** -0.630*** 0.327**

(0.186) (0.147) (0.179) (0.123) (0.206) (0.152)

Size -0.120 -0.182 -0.283 -0.027 -0.219 -0.087

(0.227) (0.141) (0.187) (0.134) (0.189) (0.151)

BM 0.083 -0.052 0.353*** -0.310*** 0.346*** -0.308***

(0.108) (0.111) (0.101) (0.102) (0.107) (0.112)

RDME -0.036 0.391*** -0.116 0.467*** -0.208** 0.561***

(0.104) (0.147) (0.129) (0.159) (0.093) (0.168)

PATME 0.042 0.083 0.075** 0.051 0.077 0.049

(0.039) (0.055) (0.037) (0.054) (0.050) (0.056)

CAPXME -0.159*** 0.126* -0.060 0.032 -0.036 0.010

(0.051) (0.075) (0.064) (0.090) (0.070) (0.084)

Reversal 0.042 -0.242 0.012 -0.213 0.072 -0.273*

(0.078) (0.170) (0.076) (0.155) (0.077) (0.153)

Momentum 0.137 0.047 -0.129 0.299** -0.072 0.248

(0.127) (0.160) (0.103) (0.139) (0.101) (0.199)

Illiquidity 0.228* -0.313*** 0.170 -0.258** 0.237* -0.326***

(0.133) (0.117) (0.135) (0.127) (0.134) (0.114)

IVOL -0.568*** 0.858*** -0.430** 0.727*** -0.633*** 0.933***

(0.214) (0.220) (0.182) (0.201) (0.178) (0.199)

Industry FE Yes Yes Yes Yes Yes Yes

Observations 86,629 90,838 86,625 90,842 87,317 90,150

R-squared 0.100 0.106 0.103 0.103 0.103 0.103
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Table 10: Returns Around Earnings Announcement

This table reports regressions of announcement window daily returns (DLYRET) on day fixed
effects, High AC * Small, earnings day indicator variables, and other lagged control variables. High
AC is an indicator which takes the value one if the AC of the firm is in the highest quintile in
year t-1, and zero otherwise. Small is an indicator variable which takes the value one if the firm is
in the lowest quintile based on Size, the market value of equity at the end of June of year t, and
zero otherwise. EDAY is an indicator variable which takes the value one if the daily observation
is during an announcement window and zero otherwise. Following Engelberg et al. (2018), we
obtain earnings announcement dates from the Compustat database, examine the firm’s trading
volume scaled by market trading volume for the day before, the day of, and the day after the
reported earnings annoucement date, and define the day with the highest volume as the earnings
announcement day. Control variables include lagged values for each of the past ten days for stock
returns, stock returns squared, and trading volume. Standard errors are clustered by date and
shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **,
and *.

1-day window 3-day window

(1) (2) (3) (4)

High AC * Small * EDAY 0.338 0.328 0.200** 0.220**
(0.249) (0.248) (0.097) (0.097)

High AC * Small 0.052*** 0.046*** 0.046*** 0.040**
(0.015) (0.016) (0.015) (0.016)

EDAY 0.271*** 0.269*** 0.133*** 0.137***
(0.038) (0.038) (0.023) (0.023)

High AC -0.002 -0.004 -0.002 -0.004
(0.005) (0.005) (0.005) (0.005)

Size -0.022*** -0.012** -0.023*** -0.012**
(0.006) (0.006) (0.006) (0.006)

Lagged controls No Yes No Yes
Day FE Yes Yes Yes Yes

Observations 4,234,589 4,230,651 4,234,589 4,230,651
R-squared 0.001 0.010 0.001 0.010
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Table 11: Limits to Arbitrage

This table reports monthly Fama-Macbeth (1973) regressions in subsets defined relative to the
median value of idiosyncratic volatility, age, and bid-ask spread, respectively.IVOL is the standard
deviation of the residual from a regression of daily stock returns in excess of the risk-free rate
on daily market returns in excess of the risk-free rate over the previous twelve months ending in
year t-1. Age is the number of years listed on Compustat at the end of year t-1. At June of
each year, the average bid-ask spread is found over the previous 12 months, where the bid-ask
spread is defined as the difference between the bid and ask price divided by the midpoint of the
two prices. Fama-French (1997) 17 industry fixed effects are included. The independent variables
are winsorized at the 1% and 99% levels and thereafter standardized to have a mean of zero and
standard deviation of 1. Newey and West (1987) adjusted standard errors using twelve month lags
are shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***,
**, and *.

IVOL Age Bid-Ask spread

High Low High Low High Low
(1) (2) (3) (4) (5) (6)

High AC * Small 0.516** 0.171 0.294 0.372** 0.637* -0.868
(0.221) (0.526) (0.907) (0.187) (0.325) (0.968)

High AC -0.198 0.048 0.381 -0.203* -0.406 0.146
(0.137) (0.114) (0.304) (0.103) (0.256) (0.136)

Size -0.354** -0.157 -0.232 -0.177 -0.522** 0.091
(0.152) (0.109) (0.213) (0.118) (0.251) (0.234)

BM -0.034 0.017 -0.020 0.015 -0.063 0.117
(0.107) (0.081) (0.202) (0.077) (0.153) (0.096)

RDME 0.222** 0.163* 0.252 0.219** 0.417* 0.288*
(0.107) (0.090) (0.207) (0.086) (0.222) (0.152)

PATME 0.060 0.081* -0.064 0.074 0.195 0.142**
(0.055) (0.045) (0.134) (0.048) (0.152) (0.062)

CAPXME 0.176** -0.090 -0.262 0.025 0.132 -0.146
(0.080) (0.067) (0.258) (0.061) (0.088) (0.149)

Reversal -0.035 -0.274*** 0.075 -0.119 -0.108 -0.365**
(0.095) (0.072) (0.143) (0.077) (0.100) (0.157)

Momentum 0.063 0.163 -0.054 0.091 0.142 -0.374***
(0.112) (0.109) (0.161) (0.100) (0.155) (0.139)

Illiquidity 0.011 -0.020 -0.282 -0.008 -0.102 3.003
(0.098) (0.260) (0.232) (0.113) (0.127) (6.301)

IVOL 0.172 0.200 0.015 0.171
(0.255) (0.128) (0.255) (0.302)

Industry FE Yes Yes Yes Yes Yes Yes

Observations 84,890 90,040 23,654 151,276 59,969 57,355
R-squared 0.120 0.147 0.310 0.115 0.140 0.221

51



Table 12: Limited Attention

This table reports monthly Fama-Macbeth (1973) regressions of returns on Absorptive capacity and
size within subsamples divided into high and low investor attention groups. High AC is an indicator
which takes the value one if the AC of the firm is in the highest quintile and zero otherwise, Small
is an indicator variable which takes the value one if the firm is in the lowest quintile based on
size, and zero otherwise. Some specifications include industry fixed effects using the 17-industry
classification based on Fama and French (1997). All continuous variables are winsorized at the
1% and 99% levels. Newey and West (1987) adjusted standard errors using twelve month lags are
shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **,
and *.

Analyst coverage Forecast Dispersion Institutional Ownership

High Low High Low High Low
(1) (2) (3) (4) (5) (6)

High AC * Small 0.617 0.804** 1.648*** -0.203 -16.991 0.756*
(0.582) (0.347) (0.506) (0.666) (11.442) (0.450)

High AC -0.145 -0.053 -0.062 -0.073 0.055 -0.381
(0.088) (0.105) (0.114) (0.079) (0.380) (0.260)

Size -0.072 -0.253 -0.254* -0.124 -0.945** -0.388**
(0.169) (0.160) (0.134) (0.139) (0.341) (0.187)

BM -0.035 0.052 0.047 0.084 0.135 -0.247
(0.085) (0.092) (0.093) (0.117) (0.335) (0.218)

RDME 0.220** 0.186* 0.173* 0.259* 1.749 0.405*
(0.107) (0.100) (0.093) (0.134) (1.334) (0.219)

PATME 0.176*** 0.028 0.106 0.002 -1.003 0.155*
(0.061) (0.053) (0.077) (0.050) (1.048) (0.089)

CAPXME -0.081 -0.112 -0.123* -0.050 -1.257*** 0.272
(0.079) (0.085) (0.069) (0.117) (0.392) (0.165)

Reversal -0.112 -0.041 -0.128 -0.160 -0.833** -0.297***
(0.081) (0.092) (0.094) (0.102) (0.319) (0.108)

Momentum -0.005 0.139 0.063 0.122 0.104 -0.125
(0.134) (0.107) (0.124) (0.127) (0.948) (0.150)

Illiquidity 27.196 -0.259 -0.527 0.872 -3.891 -0.401
(20.887) (0.287) (0.902) (1.353) (5.769) (0.269)

IVOL 0.072 0.185 0.178 0.046 -0.389 0.175
(0.239) (0.134) (0.166) (0.214) (0.646) (0.296)

Industry FE Yes Yes Yes Yes Yes Yes

Observations 68,426 75,552 62,258 62,184 11,421 52,484
R-squared 0.229 0.131 0.188 0.200 0.374 0.148
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Appendix
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Table A.1: Variable Definitions

This table shows a summary of all explanatory variables used in the analysis.

Variable name Variable description

Ret Monthly returns from Center for Research in Security Prices (CRSP)

Excess Ret Monthly returns − risk-free rate

TFP Firm-level productivity found using the Olley and Pakes (1996) method
(İmrohoroğlu and & Tüzel (2014)). TFP is represented by ωit from the pro-
duction function yit = β0 +βkkit +βllit +ωit +ηit. y is defined as the accounting
value added (sales - material expense, where material expense is the difference
between total expense (sales-oibdp) and labor expense (emp*wage)). k is capital
stock calculated using the perpetual inventory method with depreciation of 8%.

AC Measure of firm absorptive capacity, found as the average of the regression coef-
ficients for technology spillover pools in rolling regressions of TFP on own R&D
pool and technology spillover pools.

Small An indicator variable which takes the value one if the firm is in the lowest quintile
based on Size, the market value of equity at the end of June year t, and zero
otherwise.

Spilltech Firm-level technological spillover pool calculated as the weighted sum of the
other firms’ R&D expenditure, weighted by the uncentered correlation between
firms’ patent portfolios (Bloom, Shankerman, and Van Reenen (2013))

RD stock Firm’s own R&D stock calculated by the perpetual inventory method using R&D
expenditure, assuming depreciation rate of 15%.

Size Logarithm of market capitalization

BM Logarithm of book to market ratio, the book equity for fiscal year ending in
calendar year t-1 divided by market equity at the end of December for t-1. Book
equity is shareholder’s equity, plus balance-sheet deferred taxes and investment
tax credit if available, minus the book value of preferred stock. Stockholders’
equity, or common equity plus the carrying value of preferred stock, or total
assets minus total liabilites in that order of availability is used as shareholders’
equity. For the book value of preferred stock, redemption , liquidation or par
value is used depending on availability. (Hou,Xue, and Zhang (2020))

RDME R&D expenditure divided by year-end market equity.

PATME Logarithm of one plus patent counts divided by year-end market equity (Hirsh-
leifer, Hsu, and Li (2013))

CAPXME Logarithm of one plus capital expenditure divided by year-end market equity.

(Continue)
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Table A.1 – Continued

Variable name Variable description

Reversal Previous month’s one-month raw return (Jagadeesh 1990).

Momentum Cumulative raw return beginning twelve months ago through the month before
last (Jagadeesh and Titman 1993)

Illiquidity Absolute stock return in the previous month divided by trading volume in the
same month (Amihud (2002))

Profitability Profitability is defined as return on equity, ROE, measured as income before
extraordinary items divided by 1-year-lagged book equity.

IVOL Standard deviation of the residual from a regression of daily excess stock returns
on daily excess market returns over the previous twelve months (Ang, Hodrick,
Xing and Zhang (2006)).

CAPXAT Capital expenditure divided by total assets.

PATAT Patent counts divided by total assets.

ROA Income before extraordinary items plus interest expenses scaled by lagged total
assets.

AG Asset growth is measured as the change in total assets divided by lagged total
assets.

Industry Return Lagged monthly value-weighted average returns of an individual stock’s 2-digit
SIC industry (Moskowitz and Grinblatt (1999)).

Customer Return Lagged returns of a firm’s portfolio of customer industries identified from BEA
surveys. Specifically, portfolio returns are weighted by the share of sales to other
industries. (Menzly and Ozbas (2010)).

Supplier Return Lagged returns of a firm’s portfolio of upplier industries identified from BEA
surveys. Specifically, portfolio returns are weighted by the share of purchases
from other industries. (Menzly and Ozbas (2010)).

Pseudo-conglomerate Re-
turn

Returns from a portfolio of pure play firms that collectively span an individual
firm’s lines of business, weighted by the industry segment’s sales contribution to
the focal firm (Cohen and Lou (2012)).
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Table A.1 – Continued

Variable name Variable description

Leader An indicator variable which takes the value of one if a firm is a R&D leader
that experiences R&D-to-sales and -assets greater than 2%, within an industry
year that experiences an aggregate R&D growth greater than 20%, and zero
otherwise (Jiang, Qian, and Yao (2016)).

Peer An indicator equal to one if a firm is not a leader within an industry that
experiences an aggregate R&D growth during the current or previous three years
(Jiang, Qian, and Yao (2016)).

∆RDlarget−1
(∆RDlarget−5)

Indicator for large R&D increases, which takes the value one if R&D expenditure
increased by 5%, R&D expenditure divided by lagged total assets is greater than
5% and if R&D change divided by lagged assets is greater than 5% last year.
(if the conditions are met for the average values over the previous 5 years)
(Eberhart, Maxwell, and Siddique (2004)).

Leverage Logarithm of one plus total debt over book equity. Total debt is long-term debt
plus debt in current liabilities. Book equity is shareholder’s equity, plus balance-
sheet deferred taxes and investment tax credit if available, minus the book value
of preferred stock. Stockholders’ equity, or common equity plus the carrying
value of preferred stock, or total assets minus total liabilities in that order of
availability is used as shareholders’ equity. For the book value of preferred stock,
redemption , liquidation or par value is used depending on availability.

EDAY An indicator variable which takes the value one if the daily observation is during
an earnings announcement date window and zero otherwise. Earnings announce-
ment dates are from the Compustat database, and based upon calculations as
specified in Engelberg, Mclean, and Pontiff (2018).
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Olley and Pakes Method (1996)

Observations with missing values are dropped. Observations with SALE, AT, EMP, and

PPENT less than 0.1 are dropped. Observations with CAPX missing and less than or equal

to 0 are also dropped. Drop observations if materials <0.01 and if value added<0.01.

Olley and Pakes procedure:

yit = β0 + βkkit + βllit + ωit + ηit

The basic idea is that labor(l) is an optimal decision made by firms at a point in time imply-

ing that it has no effects to the future, it is like a state variable. It is also the assumption that

given the capital stock, investment is strictly increasing in the unknown firm productivity

it(kjt, ωjt) . This in theory, implies that the inverse function of investment ht(kjt, ijt) = ωjt)

can identify firm productivity. In application, a polynomial function of capital stock and in-

vestment is used to approximate the sum of the polynomial terms for capital and investment

as well as the TFP term: i.e. φt(kjt, ijt) = β0 + βkkjt + ωjt . TFP can be estimated given

the parameters for capital stock and investment ωjt(β0, βk) = φ̂jt − β0 − βkkjt.

1. Define exit from Compustat and run probit regression on exit based on investment

and lagged capital stock as well the second order polynomials and interaction term

2. Regress value added(y) on employment (l), investment(i) ,lagged capital stock(k) and

the second order polynomials (i2, k2, ik) with industry specific year effects. In other words,

the industry year effects are taken out from the TFP measure. From here, the coefficient for

labor is estimated.

3. Define y−βll by the estimated value by the results from step 2. for i, k, k2, i2, ik, and residual.

Estimate nonlinear regression of y− βll on constant, k, lagged y− βll− βkk, and lagged exit

probability. This gives the estimate for coefficient on capital.

4. lnTFP is computed by y− βll− βkk where y− βll is from the first regression and βkk

is from the second regression.

(Observations with less than 5 observations in the industry are dropped )

The calculation of the capital stock follows as closely as possible to the aggregation method

as used in the spillover measure part.
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Internet Appendix

This Appendix contains additional results to accompany the main results

in the paper. First, we briefly describe the contents of each table and then

report the tables.

1. In Table IA.1, we report Fama-Macbeth regression estimates for the

effect of High AC * Small on monthly excess returns including the indi-

cator variable, Small in place of the control variable, Size.

2. In Table IA.2, we report Fama-Macbeth regression estimates for the

effect of High AC * Small on monthly excess returns using NYSE size

deciles, and our main effect in sub-samples based on time-period. We use

NYSE size decile as an alternative definition for small firms, where small

firms are in the bottom 10 percentile of firms. In a separate specification,

we divide the sample based on time period and report coefficients for

these separate sub-samples. In one specification, we include months

in the years 1986 to 1995, and in the second specification, we include

months in the years 1996 to 2006.

3. In Table IA.3, we report Fama-Macbeth regression estimates for the

effect of High AC * Small on monthly excess returns using alternative

definitions for absorptive capacity.

In this table, we check whether our main result is robust to alterna-

tive model specifications for AC. We estimate the following equation to

calculate AC avg.
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Ln(TFPit) = ait + bitLn(Git−1) + cit1(Git−1 = 0)

+ ditaverageLn(Spilltechit) + eit (7)

(8)

where AC avg = dit and average Ln(Spilltechit) is the average of one to

five year lags of Ln(Spilltech).

We estimate the following equation to estimate AC all.

Ln(TFPit) = ait + bitLn(Git−1) + cit1(Git−1 = 0)

+

j=5∑
j=1

dit−jLn(Spilltechit−j) + eit (9)

ACallit =
1

5

5∑
j=1

dit−j (10)

4. In Table IA.4, we report Fama-Macbeth regression estimates for the

effect of High AC * Small on monthly excess returns using alternative

industry classifications to create the industry-year fixed effects.
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Table IA.1: Fama Macbeth Regressions: Controlling for Small Firms

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July of year t to June
of year t+1 on AC and Size. High AC is an indicator which takes the value one if the AC of the firm is
in the highest quintile in year t-1, and zero otherwise. Small is an indicator variable which takes the value
one if the firm is in the lowest quintile based on Size, the market value of equity at the end of June of year
t, and zero otherwise. All other variables are as defined in Table A.1. Some specifications include industry
fixed effects using the 17-industry classification based on Fama and French (1997). All continuous variables
are Winsorized at the 1% and 99% levels and are normalized to have a mean of zero and standard deviation
of 1. Newey and West (1987) adjusted standard errors using twelve month lags are shown in parentheses.
Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **, and *.

Excess Returns
(1) (2) (3) (4) (5)

High AC * Small 0.578*** 0.661*** 0.559*** 0.543*** 0.536***
(0.206) (0.186) (0.170) (0.173) (0.172)

High AC 0.041 0.009 -0.052 -0.123 -0.088
(0.112) (0.096) (0.099) (0.095) (0.096)

Small 0.468** 0.281* 0.315** 0.175 0.111
(0.191) (0.154) (0.150) (0.170) -0.154

BM 0.135 0.085 0.068 0.088
(0.086) (0.095) (0.097) (0.099)

RDME 0.207** 0.172* 0.168*
(0.101) (0.088) (0.086)

PATME 0.055 0.061
(0.043) (0.041)

CAPXME -0.030 -0.026
(0.049) (0.054)

Reversal -0.088 -0.100 -0.118
(0.078) (0.078) (0.080)

Momentum 0.118 0.104 0.091
(0.099) (0.095) (0.096)

Illiquidity -0.047 -0.042
(0.095) (0.110)

IVOL 0.191 0.246*
(0.129) (0.129)

PATAT 0.023
(0.057)

CAPXAT 0.072**
(0.034)

ROA 0.116*
(0.065)

AG -0.224***
(0.041)

Industry FE No Yes Yes Yes Yes

Observations 219,839 204,101 192,969 174,557 173,476
R-squared 0.014 0.062 0.087 0.102 0.108
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Table IA.2: Fama Macbeth Regressions: NYSE size deciles and different time sub-periods

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July of year t to June
of year t+1 on AC and Size. High AC is an indicator which takes the value one if the AC of the firm is
in the highest quintile in year t-1, and zero otherwise. Small is an indicator variable which takes the value
one if the firm is in the lowest quintile based on Size, the market value of equity at the end of June of year
t, and zero otherwise. Small NYSE is an indicator variable which takes the value one if the firm is in the
bottom 10 percentile based on NYSE size percentiles at the end of June of year t, and zero otherwise. All
other variables are as defined in Table A.1. Columns (3) and (4) limit the sample to the time period 1986
to 1995, and columns (5) and (6) limit the sample to the time period 1996 to 2006. Some specifications
include industry fixed effects using the 17-industry classification based on Fama and French (1997). All
continuous variables are Winsorized at the 1% and 99% levels and are normalized to have a mean of zero
and standard deviation of 1. Newey and West (1987) adjusted standard errors using twelve month lags are
shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **, and *.

Excess Returns
(1) (2) (3) (4) (5) (6)

High AC * Small NYSE 0.289* 0.304*
(0.155) (0.155)

High AC 0.096 -0.113 -0.119 -0.391** 0.083 -0.088
(0.116) (0.083) (0.075) (0.177) (0.180) (0.140)

Small NYSE 0.336** 0.236
(0.169) (0.159)

High AC * Small 0.794*** 0.483* 0.764** 0.642**
(0.221) (0.277) (0.320) (0.262)

Small -0.207 -0.162 -0.287** -0.158
(0.208) (0.178) (0.141) (0.185)

BM 0.060 -0.153 0.094
(0.094) (0.183) (0.073)

RDME 0.172* 0.401 0.175
(0.089) (0.270) (0.133)

PATME 0.063 0.081 0.086
(0.041) (0.065) (0.056)

CAPXME -0.027 0.127 -0.098
(0.054) (0.247) (0.113)

Reversal -0.096 0.102 -0.204*
(0.078) (0.120) (0.107)

Momentum 0.107 0.267** -0.023
(0.095) (0.109) (0.136)

Illiquidity -0.031 -0.083 -0.131
(0.090) (0.187) (0.154)

IVOL 0.184 0.106 0.253
(0.130) (0.131) (0.194)

Industry FE No Yes No Yes No Yes

Observations 204,101 174,557 100,019 78,028 118,920 95,801
R-squared 0.021 0.102 0.021 0.101 0.020 0.127
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Table IA.3: Fama-Macbeth Regressions: Alternative specifications for AC

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July of year t to June of
year t+1 on variations in AC and Size. High AC avg (all) is an indicator which takes the value one if the AC
avg (all) of the firm is in the highest quintile in year t-1, and zero otherwise. AC avg is calculated in equation
(5) in the main paper where Ln(Spilltech) is replaced by the average of one to five years lag in Ln(Spilltech).
AC all is calculated as the average of the coefficients of the one to five years lagged Ln(Spilltech) where all
five lags are included simultaneously in equation (5) in the main paper. Small is an indicator variable which
takes the value one if the firm is in the lowest quintile based on Size, the market value of equity at the end of
June of year t, and zero otherwise. RDC/Sale is the ratio of R&D stock to sales. All other variables are as
defined in Table A.1. Some specifications include industry fixed effects using the 17-industry classification
based on Fama and French (1997). All continuous variables are Winsorized at the 1% and 99% levels and are
normalized to have a mean of zero and standard deviation of 1. Newey and West (1987) adjusted standard
errors using twelve month lags are shown in parentheses. Statistical significance at the 1%, 5% and 10%
levels is denoted by ***, **, and *.

Excess Returns
(1) (2) (3) (4) (5) (6)

High AC avg * Small 0.703*** 0.613***
(0.223) (0.209)

High AC avg 0.027 -0.097
(0.115) (0.087)

High AC all * Small 0.675*** 0.528***
(0.215) (0.187)

High AC all -0.028 -0.158*
(0.117) (0.095)

High AC * Small 0.831*** 0.559**
(0.278) (0.244)

High AC -0.036 -0.043
(0.109) (0.151)

RDC/Sale 1.194 -1.250
(1.144) (1.071)

Size -0.206* -0.156 -0.209* -0.163 -0.210** -0.110
(0.108) (0.116) (0.111) -0.117 (0.094) (0.110)

Other controls No Yes No Yes No Yes
Industry FE No Yes No Yes No Yes

Observations 239,777 180,603 220,481 180,603 176,111 158,455
R-squared 0.018 0.102 0.061 0.101 0.084 0.124
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Table IA.4: Fama-Macbeth Regressions: Alternative industry fixed effects

This table reports monthly Fama-Macbeth (1973) regressions of excess returns from July of year t to June
of year t+1 on variations in AC and Size. High AC is an indicator which takes the value one if the AC of
the firm is in the highest quintile in year t-1, and zero otherwise. Small is an indicator variable which takes
the value one if the firm is in the lowest quintile based on Size, the market value of equity at the end of
June of year t, and zero otherwise. All other variables are as defined in Table A.1. Columns (1) and (2)
include fixed effects based on Fama-French 30 industry classification, columns (3) and(4) based on Fama-
French 12 industry classification, and columns (5) and (6) based on SIC 2-digit industry classifications=.
All continuous variables are Winsorized at the 1% and 99% levels and are normalized to have a mean of zero
and standard deviation of 1. Newey and West (1987) adjusted standard errors using twelve month lags are
shown in parentheses. Statistical significance at the 1%, 5% and 10% levels is denoted by ***, **, and *.

Excess Returns
(1) (2) (3) (4) (5) (6)

High AC * Small 0.686*** 0.534*** 0.724*** 0.558*** 0.705*** 0.500***
(0.186) (0.172) (0.173) (0.169) (0.176) (0.168)

High AC -0.066 -0.145 -0.039 -0.142 -0.029 -0.126
(0.092) (0.103) (0.094) (0.101) (0.100) (0.103)

Small -0.192* -0.112 -0.115 -0.112 -0.122 -0.123
(0.104) (0.106) (0.089) (0.105) (0.093) (0.103)

BM 0.029 0.099 0.015 0.096 -0.013
(0.078) (0.077) (0.081) (0.082) (0.088)

RDME 0.181** 0.176** 0.187**
(0.070) (0.073) (0.085)

PATME 0.051 0.052 0.058
(0.040) (0.041) (0.040)

CAPXME -0.010 -0.016 0.003
(0.051) (0.051) (0.053)

Reversal -0.112 -0.102 -0.116
(0.078) (0.078) (0.076)

Momentum 0.082 0.074 0.082
(0.096) (0.096) (0.093)

Illiquidity -0.016 -0.047 -0.027
(0.095) (0.096) (0.102)

IVOL 0.137 0.153 0.155
(0.118) (0.118) (0.121)

Industry FE Yes Yes Yes Yes Yes Yes

Observations 219,839 174,557 204,101 174,557 204,101 174,557
R-squared 0.079 0.120 0.060 0.096 0.116 0.142
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