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Modelling and Predicting Failure in US Credit Unions 

Abstract 

This study presents a Random Forest (RF) - based machine learning model to predict the liquidation 

of US Credit Unions one year in advance, using biannual data from December 2001 to September 

2020. The model demonstrates impressive accuracy with the training set (89.1%) and the test set 

(97.9%) when utilising all 44 factors. Simplifying the model to only the top five factors based on 

feature importance analysis results in a slightly lower, but still significant, accuracy for both sets 

(83.6% and 92.2%, respectively). Comparisons with seven other classification methods verify the 

superiority of the RF model. This study also uses the Cox proportional-hazards model and Shapley 

value-based approaches to interpret the significance and interactions of key features. The model offers 

valuable tools for regulators and Credit Unions, providing an early warning system for potential 

failures and an opportunity for corrective measures or strategic mergers, ultimately protecting the 

National Credit Union Share Insurance Fund. 

 

Keywords: Random Forest; Interpretable machine learning; Explainable AI; Failure prediction; 

Feature selection; Credit unions. 

 

1. Introduction 

The Federal Credit Union Act of 1934 in the US initiated a surge in establishing Credit Unions, 

reaching a peak of 23,866 institutions in 1969. However, despite the continuous growth of assets and 

memberships, which increased to $1.85 billion and 124.3 million by 2020, there has been a consistent 

decline in the number of Credit Unions, falling to 5,099 by the end of 2020. This number reduction 

has been mainly due to mergers and many failures, especially during substantial economic downturns. 

Given this trend, stakeholders such as the National Credit Union Administration (NCUA), the Credit 

Union National Association (CUNA), the Credit Union board of directors, and associated 

organisations are keenly interested in reliable models that can accurately predict the likelihood of 

Credit Union failure.1 

Despite the scarcity of information regarding Credit Union failures2, several studies have unearthed 

key contributing factors. In the US, younger, smaller, and less capitalised Credit Unions are more 

prone to failure (Wilcox, 2005), especially during adverse macroeconomic conditions (Smith and 

Woodbury, 2010). Furthermore, Credit Unions with small asset sizes, high liquidity, low loans-to-

asset ratios, and overly high capital ratios are at an increased risk (Goddard et al., 2014). International 

studies also offer insights; machine learning models have effectively predicted early financial distress 

in Australian Credit Unions (Tan and Dihardjo, 2001). In Canada, the Equity/Asset ratio is a robust 

 
1 Although such events occur stochastically (to a degree), information from capital markets can be utilised to develop 

predictive models (Barboza et al., 2017). 
2 An extensive literature exists regarding bank default prediction. A review of this literature is found in Demyanyk and 

Hasan (2009). 



predictor of failure (Pille and Paradi, 2002). In the UK, a multi-period logit model based on 

macroeconomic and institutional level indicators obtained from CAMEL ratios effectively 

characterises troubled Credit Unions a year in advance (Coen et al., 2019). These findings underscore 

the importance of macroeconomic conditions and institutional-level indicators in predicting Credit 

Union failures. 

Machine learning, a branch of artificial intelligence, leverage intelligent algorithms rooted in statistical 

methods that enable computers to learn from experience and make predictions or classifications. Such 

algorithms analyse known data, establishing laws applied to anonymous data (Russell and Norvig, 

2021; Alpaydin, 2020). These data-intensive methods have permeated financial sectors, enhancing 

decision-making in financial markets forecasting, risk modelling, and failure prediction (Panos and 

Wilson, 2021; Jordan and Mitchell, 2015; Liu and Pun, 2022). Random Forest (RF) is recognised for 

its accuracy and power among various machine learning algorithms. It randomises variables and data 

to construct multiple decision trees, where the individual trees' outputs determine the final output. The 

advantages of RF include efficient computation for large datasets, resilience to missing and unbalanced 

data, unbiased error estimates, and revealing insights about variable importance and interaction 

(Emerson et al., 2019; Shi and Horvath, 2006; Van et al., 2012). However, machine learning models 

have limitations compared to classical survival analysis methods. Statistical models typically offer 

more substantial explanatory power and extensive diagnostic capabilities, whereas machine learning 

models rely on numerical optimisation and lack a clearly defined process for generating results (Dixon 

et al., 2020). Thus, selecting an analytical method should reflect the specific needs and constraints of 

a given problem. 

This study presents an innovative application of machine learning, specifically the RF model, to predict 

the potential failure of US Credit Unions one year in advance. The data utilised spans from December 

2001 to September 2020, a period which has seen a decrease in the number of Credit Unions but an 

increase in membership and asset size (Wilcox, 2005). This paradox underlines the importance of 

developing reliable prediction models for regulatory bodies, an objective of critical importance to 

bodies such as the NCUA and the CUNA. The RF model is selected due to its high accuracy, 

computational efficiency, and ability to handle large volumes of variables and missing data (Emerson 

et al., 2019). We undertake a comparative analysis of the RF model with seven alternative machine 

learning techniques including AdaBoost, Decision Tree (DT), Support Vector Machine (SVM), 

Logistic Regression, Linear Discriminant Analysis, Naive Bayes and K-Nearest Neighbours (KNN) 

(Alpaydin, 2020; Dixon et al., 2020). Furthermore, we employ the Cox proportional-hazards (Cox PH) 

model to elucidate the econometric implications of critical variables. 

We regard a Credit Union as failed if it has been liquidated or subjected to a purchase and assumption 

enforced by the NCUA. The data subset from January 2003 to June 2015 serves as model training data, 

and July 2015 to September 2020 as the testing period. Emphasising failure prediction and post hoc 

explanations, we employ interpretable machine learning techniques, including feature importance, 

accumulated local effects (ALE), and Shapley value-based approaches (SHapley Additive 

exPlanations (SHAP) and Shapley Additive Global importancE (SAGE)) (Apley and Zhu, 2016; 

Lundberg and Lee, 2017). Findings indicate that the interactions between various features are crucial 

in predicting Credit Union failures. RF models showcase remarkable predictive accuracy (89.1% for 

the training set, 97.9% for the test set), outperforming logistic regression. While focusing on the five 



most crucial features, accuracy remains high (83.6% for the training set, 92.2% for the test set), 

demonstrating that these factors encompass most of the predictive power. The comparison of RF with 

seven alternative methods underlines the superiority of RF across the predictive classifications. 

Overall, this study primarily demonstrates the efficiency and flexibility of machine learning models in 

feature selection, circumventing the challenges of traditional econometric specification testing. These 

models effectively quantify and visualise the impact of features on predicted outcomes, including non-

monotonic effects, which linear regression struggles to characterise. This study shows that a reliable 

future prediction of Credit Union failure can be achieved using as few as five factors, thus providing 

an early warning system that allows for corrective measures or merger partner identification, 

safeguarding the National Credit Union Share Insurance Fund (NCUSIF). Furthermore, the study 

employs a unique methodology combining the Cox PH model and an explainable machine learning 

model, underscoring the significance of feature interactions in predicting Credit Union failures. 

The most significant contribution of this study is the efficacy of using a reduced set of critical features 

in predicting Credit Union failure. Remarkably, even when the model is constrained to the top five 

features, it retains a high degree of accuracy for both the training and test sets. This finding offers a 

streamlined approach to risk assessment and provides a manageable framework for decision-makers. 

Additionally, the study employs various interpretable machine learning techniques to provide a 

detailed understanding of decision-making processes (Apley and Zhu, 2016; Lundberg and Lee, 2017). 

These techniques offer differing insights into the model's function and a comprehensive understanding 

of the factors influencing Credit Union failure. Minor contributions include providing an early warning 

system for at-risk Credit Unions, allowing these institutions to implement corrective measures or find 

appropriate merger partners. This approach safeguards the NCUSIF. The findings also open avenues 

for future research. If expanded to encompass a broader spectrum of Credit Unions, the approach 

detailed in this study could provide invaluable insights for regulatory bodies. 

The rest of this paper is structured into sections addressing literature review, data introduction, the 

three-stage research method, detailed explanation of the RF-based model framework and interpretable 

machine learning techniques, results discussion, and concluding remarks. 

2. Confronting Financial Institution Research Using Machine 

Learning 

Integrating machine learning into econometrics has sparked significant discussions and 

transformations in financial institution research. This literature review explores the intersection 

between machine learning and econometrics, building upon influential works such as Varian's (2014) 

and Mullainathan and Spiess's (2017) examination of the predictive power of machine learning in 

econometrics. The debate concerns balancing predictive performance and traditional econometric 

models' inferential capabilities. Furthermore, challenges arise regarding causality, as econometrics 

traditionally emphasises causal relationships, while machine learning focuses on prediction. Ethical 

considerations, interpretability issues and the potential bias of machine learning algorithms have been 

highlighted (Kleinberg et al., 2017). Addressing these concerns, Athey (2018) offers insights into the 

strengths of machine learning for semi-parametric estimation, systematic model selection and 

modifying algorithms to provide valid confidence intervals. Ultimately, the combination of machine 

learning and new datasets will profoundly impact financial institution research, influencing research 



questions, collaborative approaches and the role of economists in policy implementation. This review 

highlights the dynamic and transformative relationship between machine learning and econometrics, 

underscoring the benefits and challenges of pursuing advanced financial analysis. 

Recent research has increasingly applied machine learning methods to issues relevant to financial 

institutions, outperforming traditional statistical techniques in several applications. Min and Lee 

(2005) use machine learning to predict bankruptcy with superior explanatory power and stability. 

Khandani et al. (2010) utilise these methods to build non-linear consumer credit risk prediction models, 

resulting in significant cost savings. Liu and Zhang (2010) develop an effective machine learning 

model to detect suspicious activities for regulators and financial institutions, aiding in combating 

money laundering. Wang et al. (2011) apply integrated learning using multiple classifiers for credit 

scoring and achieved optimal performance with the stacking and bagging decision tree. Barboza et al. 

(2017) test machine learning models for predicting corporate bankruptcy, outperforming traditional 

approaches and improving prediction accuracy, especially with bagging, boosting, and RF techniques. 

Bellotti et al. (2021) use a series of regression techniques and machine learning models to predict the 

recovery rate of non-performing loans. The results suggest that rule-based models such as RF, Boosted 

Trees and Cubism perform significantly better. Petropoulos et al. (2020) use a range of modelling 

approaches to predict bank failures for a sample of US financial institutions. The results show that RF 

is superior in out-of-sample and out-of-time predictions, and that neural networks perform almost as 

well as RF in out-of-time prediction. Conlon et al. (2021) suggest that machine learning techniques 

can improve the performance of factor-based portfolio optimisations. Lastly, Chang et al. (2018) argue 

the impact of data's heterogeneous nature on classification accuracy, successfully using the XGBoost 

classifier to build a superior credit risk evaluation model. 

Machine learning has been applied to tackle issues pertinent to Credit Unions. Desai et al. (1997) find 

that neural networks and genetic algorithms surpass traditional methods like linear discriminant 

analysis and logistic regression in classifying Credit Union loans. Tan and Dihardjo (2001) 

demonstrate the effectiveness of an Artificial Neural Network (ANN) model over a Probit model for 

developing early warning signals of financial distress in Australian Credit Unions. Harris (2013) 

compares two SVM-based credit-scoring models using different default definitions, concluding that 

broader default definitions performed better, and quantitative models improved risk assessment. Gozer 

et al. (2014) find that statistical models based on ANN and SVM technologies excel at predicting 

bankruptcy in Brazilian Credit Unions, with the SVM-based LibSVM algorithm performing best. 

Finally, Paula et al. (2019) propose a method combining credit risk modelling and profit scoring for 

improved loan provision effectiveness in Brazilian Credit Unions, finding the RF model superior in 

estimating credit and profit scores compared to logistic and ordinary least squares regression models. 

These papers are summarised in detail in Appendix 1. 

3. Data and Methodology 

This study predicts Credit Union failures by analysing financial data and status information from 

December 2001 to September 2020. We exclude Credit Unions have abnormal data or have more than 

two features without data. We use data from at least one year before each observation time point. 

The model training data uses a subset covering January 2003 to June 2015. This dataset contains 

information on 110 Credit Unions that failed during this period and additionally information on a 



further 110 Credit Unions that existed unaltered over this period. The failed Credit Unions in the 

training set contain all Credit Unions in the filtered database that are categorised as having ‘failed’ 

during this period. The same number of surviving Credit Unions are chosen for the training set to 

balance out the dataset. Specifically, there were 6,021 surviving Credit Unions in 2015. We employ 

the random under-sampling method (Kotsiantis and Pintelas, 2003) to select 110 of them to match the 

110 failed Credit Unions in that period. Random under-sampling is a non-heuristic method that aims 

to overcome the idiosyncrasies of the machine learning algorithm by randomly eliminating examples 

from the majority class. A limitation of random under-sampling is that potentially useful data that may 

be important to the inductive process may be discarded (Kotsiantis et al., 2006). To mitigate this 

limitation, we match surviving Credit Unions with failed Credit Unions based on the basis of their 

location (state) as they adopt a community-based strategy (Deller and Sundaram-Stukel, 2012). The 

test set includes all Credit Unions that are filed as failed, 34 in total, from July 2015 to September 

2020. The test set also includes 5,166 Credit Unions that survived over the course of the same period. 

For testing purposes, data on these surviving Credit Unions is chosen from a random year during the 

period under assessment. 

We use the PEARLS3 monitoring toolkit to identify 44 financial indicators to analyse a Credit Union's 

financial condition. We also consider 16 additional factors from the literature. The variables used in 

our predictive models are in Appendix 2, and their descriptive statistics are in Appendix 3. The data 

includes both failed and surviving Credit Unions. 

This study aims to predict Credit Union failures using a three-part method. We use machine learning 

classifiers, followed by explainable AI algorithms to analyse the feature space of the best model, and 

classical survival models to clarify feature complexities. See Figure 1 for the design of the whole 

paper. 

3.1 Stage 1: Machine Learning Horse Race 

In Appendix 4, we provide a detailed presentation of the RF model, which is the best-performing 

model. To evaluate the effectiveness of the RF-based model, we compared it with seven other 

mainstream classification methods, namely AdaBoost, DT, SVM, Logistic Regression, Linear 

Discriminant Analysis, Naive Bayes, and KNN. Appendix 5 contains the classification results of these 

methods after 5-fold cross-validation, with all 44 variables used in the comparative tests. Our analysis 

shows that the RF procedure outperforms all other methods, with an overall accuracy of 97.9%. The 

false negatives rate for the RF model (the Credit Union continues to survive but is predicted to fail) is 

only 2%, while the false positive rate (the Credit Union fails but is predicted to survive) is 8.8%. Only 

the AdaBoost method comes close to the RF procedure in terms of performance, with an overall 

accuracy of 94.9%, a false negatives rate of 5.0%, and a false positive rate of 10.4%. Additionally, we 

also evaluated the performance of both training and test sets for the RF procedure when using only the 

five most important variables. Our findings indicate that even with only these five variables, the RF 

model provides a high level of predictive accuracy for the test sets, which is quite pleasing.

 
3 PEARLS was developed by the World council of Credit Unions (WOCCU). It is a set of financial ratios or indicators 

that help to standardize terminology between institutions. In total, there are 44 quantitative financial indicators that 

facilitate an integral analysis of the financial condition of any financial institution. PEARLS is an acronym which stands 

for (Protection, Effective financial structure, Asset quality, Rates of return and cost, Liquidity and Signs of growth). 
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Figure 1. Research Design 
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3.2 Stage 2: Explain the Machines 

In order to interpret the prediction process of the RF model, four techniques of interpretable machine 

learning are integrated. The structure of the interpretable RF classification model used in this research 

is illustrated in Figure 2. The 44 variables listed in Appendix 2 are used as the inputs. The RF 

classification model output is the labelled classes of future performance of the Credit Unions 

concerned (Failed or Survived). 

 

Figure 2. Structure of Designed RF Classifier 

Traditional machine-learning models lack explanations for their results, making it difficult to prevent 

errors. This study shows that financial indicators are intertwined and nonlinear, requiring a method 

that provides classification results and details the decision-making process. Feature importance, 

interactions, and ALE are essential for understanding the mechanics behind predictions. 

■ Feature Importance (FI) 

In order to predict the future performance of the Credit Union, we need to determine the importance 

of various factors. We use an unbiased FI obtained through Out-of-Bag (OOB) prediction to do this. 

This method allows us to see how the classification error varies when the values of a particular feature 

in the OOB prediction test are randomly changed. Another way to assess feature importance is by 

calculating the gain in improving the Gini impurity changes resulting from the splits per feature. A 

larger Gini value indicates that the feature has more potential to improve the classification result. For 

a detailed explanation of determining unbiased FI and Gini impurity FI, please refer to Liu et al. (2021). 

■ Feature Interaction 

When developing a prediction model, the relationships between different factors can often be complex 

and interactive. This means that the effects of each factor on the predicted outcome are not simply 

cumulative but more intricate. To address this, more advanced algorithms, particularly tree-based ones, 

are better equipped to capture these interactions and therefore tend to perform better (Boehmke and 

Greenwell, 2019). To further estimate the strength of these interactions, Friedman et al. (2008) 

introduced the H-statistic, which measures the influence of feature interaction on the degree of change 
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in prediction results. Mathematically, the H-statistic for the interaction between factors is described as 

follows: 

𝐻𝑗𝑘
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where 𝑃𝐷𝑗𝑘  is the two-way partial dependence function of factors 𝑗 and 𝑘, and 𝑃𝐷𝑗𝑘൫𝑥𝑗 , 𝑥𝑘൯ =

𝑃𝐷𝑗൫𝑥𝑗൯ + 𝑃𝐷𝑘ሺ𝑥𝑘ሻ, 𝑃𝐷𝑗  is the partial dependence function of factor 𝑗. Similarly, the H-statistic of 

the factor 𝑗 interacting with any other factor is shown as follows: 
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where the prediction function 𝑓
^

ሺ𝑥ሻ is the sum of partial dependence functions, 𝑃𝐷−𝑗൫𝑥−𝑗൯ the 

partial dependence function depends on all factors apart from the 𝑗𝑡ℎ factor (Molnar, 2020). 

■ Accumulated Local Effects (ALE) 

ALE explain how features affect the prediction of a machine learning model on average. Its essence is 

simplifying the function by averaging other factors' influence, thereby reducing the complicated 

prediction function 𝑓 to a function that only relies on one/two factors. The ALE plots average the 

variations of the predictions and then accumulate them on the grid. The uncentered effect is estimated 

by: 
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Where 𝑧𝑘,𝑗 is the boundary value of the 𝑘𝑡ℎ feature interval, 𝑛𝑗ሺ𝑘ሻ the number of samples in the 

interval, the sample point in the interval and the features other than a feature 𝑗. When the effect is 

centred, the mean effect is zero. So, the ALE main effect estimator is expressed by: 

𝑓
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The ALE plots can be estimated for a single numerical feature and present the interaction effect of two 

factors. In this instance, the two factors' overall mean and main effects are adjusted. The ALE plots 

for the two factors only estimate the second-order effect (the additional interaction effect of the two 

factors) but do not contain their main effects (Molnar, 2020). To estimate the ALE second-order effect 

of 𝑥𝑗 and 𝑥𝑙, the sample range is divided into 𝐾2rectangular cells rather than using intervals. ሺ𝑘,𝑚ሻ 

represents the indices into the grid with 𝑘 corresponding to 𝑥𝑗  and 𝑚 corresponding to 𝑥𝑙 . The 

uncentered effect is estimated by: 
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So, the centred ALE second-order effect is expressed as follows (Apley & Zhu, 2020): 

𝑓
^

ሼ𝑗,𝑙ሽ,𝐴𝐿𝐸൫𝑥𝑗, 𝑥𝑙൯ = 𝑓
~
^

ሼ𝑗,𝑙ሽ,𝐴𝐿𝐸൫𝑥𝑗, 𝑥𝑙൯ −
1

𝑛
෍ ෍ 𝑛ሼ𝑗,𝑙ሽሺ𝑘,𝑚ሻ

𝐾

𝑚=1

𝐾

𝑘=1

𝑓
~
^

ሼ𝑗,𝑙ሽ,𝐴𝐿𝐸൫𝓏𝑘,𝑗, 𝓏𝑚,𝑙൯ 

■ Shapley Values, SHAP and SAGE 

The Shapley value is a solution derived from cooperative game theory that can be used to calculate the 

contributions of variables for individual predictions in various machine learning models. To calculate 

the exact Shapley value, estimating all possible alliances (sets) of factor values with and without the 

factor is necessary. During each iteration of the curious case, a random sample is chosen, and a random 

order of factors is created. Two new cases are generated by combining values, with the first being of 

particular interest. The values of the first case substitute all previous values and include the value of 

the factor in question. The second case is similar to the first, but the value of the factor is not included 

in the replacement process. This allows for the calculation of the difference in prediction. 

𝜙𝑗
𝑚 = 𝑓

^

൫𝑥+𝑗
𝑚 ൯ − 𝑓

^

൫𝑥−𝑗
𝑚 ൯ 

The average of all these differences is: 

𝜙𝑗ሺ𝑥ሻ =
1

𝑀
෍ 𝜙𝑗

𝑚

𝑀

𝑚=1

 

As more factors are involved, the number of probable alliances grows exponentially, making it, in this 

instance, more challenging to find the exact solution. In such a situation, the approximation with 

Monte-Carlo sampling developed by Štrumbelj and Kononenko (2014) solves this problem. The 

approximation is: 

𝜙
^

𝑗 =
1

𝑀
෍ሺ𝑓

^

ሺ

𝑀

𝑚=1

𝑥+𝑗
𝑚 ሻ − 𝑓

^

൫𝑥−𝑗
𝑚 ൯ሻ 
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All Shapley values can be obtained by repeating the above process. 

Based on the theory of Shapley values, SHAP are developed by Lundberg and Lee (2017) as an 

additive feature attribution approach with a local sensitivity focus. It defines the explanation as 

follows: 

𝑔ሺ𝑥′ሻ = 𝜙0 +෍𝜙𝑗

𝑀

𝑗=1

 

where 𝑔  represents the explanation model, 𝑀  means the maximum coalition size, and 𝜙𝑗 ∈ ℝ 

stands for the feature attribution for the feature 𝑗. SHAP can be used to estimate the importance of 

features. Specifically, features with larger average absolute Shapley values are considered to be more 

critical: 

𝐼𝑗 =
1

𝑛
෍ቚ𝜙𝑗

ሺ𝑖ሻ
ቚ

𝑛

𝑖=1

 

The SHAP method for determining feature importance differs from the unbiased and Gini impurity 

methods in that it measures importance based on the magnitude of feature attributions. This approach 

allows for creating a SHAP summary plot, which shows the Shapley value for each feature in a given 

case. The y-axis of the plot represents the feature importance ranking, while the x-axis represents the 

Shapley value. Additionally, the SHAP dependence plot provides a more detailed view of the 

relationship between a feature's value and its impact on predicted outcomes. Unlike the ALE plot, 

which only shows average effects, the SHAP dependence plot also displays variance. When feature 

interactions are significant, the points on the y-axis are more dispersed. Finally, the SHAP interaction 

method estimates the combined effect of multiple features after accounting for their individual effects, 

using the Shapley interaction index to measure this effect. 

𝜙𝑖,𝑗 = ෍
|𝑆|! ሺ𝑀 − |𝑆| − 2ሻ!

2ሺ𝑀 − 1ሻ!
𝑆⊆∖ሼ𝑖,𝑗ሽ

𝛿𝑖𝑗ሺ𝑆ሻ 

where 𝑆 represents the set of all possible feature coalitions, 𝛿𝑖𝑗ሺ𝑆ሻ = 𝑓
^

𝑥ሺ𝑆 ∪ ሼ𝑖, 𝑗ሽሻ − 𝑓
^

𝑥ሺ𝑆 ∪ ሼ𝑖ሽሻ −

𝑓
^

𝑥ሺ𝑆 ∪ ሼ𝑗ሽሻ + 𝑓
^

𝑥ሺ𝑆ሻ and 𝑖 ≠ 𝑗. When the values of SHAP interaction for all features are calculated, 

one matrix can be obtained per instance with dimensions, where are the feature numbers. 

An additional approach to estimating the feature importance based on the theory of Shapley value is 

SAGE, which summarises the importance of each feature by the predictive power it contributes. 

Different from SHAP, SAGE focuses on global scopes and predictive power metrics. The detailed 

formula derivation for this approach can be found in Covert et al. (2020). 
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3.3 Stage 3: Classic Survival Model Explanations 

In this stage, we use a Cox PH model to extract traditional econometric meaning from the features. 

This type of semiparametric regression model analyses the effects of multiple factors on survival 

outcomes over the study period, taking into account the survival outcome (Survived or Failed) and 

survival time as dependent variables. The model has been applied to bank failures and acquisitions in 

the past, with Wheelock and Wilson (2000) being the pioneers. We use hazard function estimations, 

as detailed in Minder and Bednarski (1996), to address failure prediction for Credit Unions. 

To prevent the issue of multicollinearity in modelling, we retain the feature with higher importance 

estimated in Stage 2 if the correlation between two variables is more significant than 0.5, and discard 

the other. The correlations between pairs of the 44 variables are displayed in Figure 3, and the features 

used to build the Cox PH model are listed in Appendix 6. We also utilise a post-hoc visual explanation 

(SHAP dependence plot) to verify the reliability of the results of this conventional statistical approach 

for failure prediction. 

 

Figure 3. Feature Linear Correlation Matrix
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4. Empirical Results 

Our RF-based framework analyses the decision-making process to classify Credit Unions based on 

survival. We train with 110 Failed and 110 Survived Credit Unions and test with 34 Failed and 5,166 

Survived. The RF classification model uses all 44 features as inputs to predict future performance. We 

conduct a sensitivity analysis of the features and explain the RF model's classification performance. 

Finally, we use the filtered 29 variables to build the Cox PH model and discuss insights gained. 

4.1 Interpretable Machine Learning 

We analyse 44 factors to predict Credit Union performance. Log total assets and total assets growth 

rate are the most important factors for survival. High nonperforming loans and low profitability and 

liquidity also increase the chance of failure. Other variables have a minor impact. SHAP and SAGE 

techniques confirm our findings (See Appendices 7 and 8 for detailed exposition). 

The H-statistic in Figure 4 reveals that feature interaction impacts prediction results. M4 (Log total 

assets) and M25 (Cash & cash equivalents/Total shares and deposits) have a strong interaction with 

other features, explaining 15.82% and 14.91% of the variance, respectively. Figure 5 shows a complex 

non-linear relationship between M4 and M25, with a strong interaction of 35.16%. The top five 

variables from Table 1 also have significant impact and interaction with other features, contributing 

significantly to the prediction result. 

In Figure 6 presents the one-dimensional ALE plots illustrating the impact of the five most significant 

variables (M4, M38, M17, M24, and M25) on the likelihood of a 'Failed' prediction. The plot shows 

that all five variables significantly influence the prediction of failure. For M4 (Log total assets), M38 

(Total assets growth rate), and M24 (Net income/Assets), an increase in their values decreases the 

probability of Credit Union failure. On the other hand, M17 (Nonperforming loans/Total loans) and 

M25 (Cash & cash equivalents/Total shares and deposits) have a positive effect, indicating that the 

probability of Credit Union failure increases as these ratios increase. As mentioned earlier, the 

literature suggests that factors such as size, profitability (Return on Assets), loan write-offs, and 

excessive liquidity are also contributing factors to the failure of US Credit Unions (Wilcox, 2005; 

Smith and Woodbury, 2010; Goddard et al., 2014). 

Figure 7 shows the two-dimensional ALE plots for the top 4 variables: M4, M38, M17, and M24, 

reporting second-order effects. The six plots demonstrate the effects of these variables on predicting 

Credit Union performance (Failed or Survived). Lighter shades indicate a higher probability of failure, 

while darker shades mean it's more likely to survive. The plots suggest that smaller Credit Unions with 

lower M38 are more likely to fail, while larger ones are more likely to survive. Other variables, such 

as Nonperforming loans/Total loans and Net income/Assets, also impact Credit Union failure rates. 
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Figure 4. Feature Interactions 
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Figure 5. Interaction Strength 

(a) Log total assets (M4); (b) Cash & cash equivalents/Total shares and deposits (M25) 
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Table 1. Feature Importance (Value and Ranking) 

Number Name 
Value 
(Unbiased FI) 

Ranking 
(Unbiased FI) 

Value 
(Gain in Improvement FI) 

Ranking 
(Gain in Improvement FI) 

Comprehensive 
Ranking 

M4 Log Total Assets 17.29  1 11.56  1 1 

M38 Total Assets Growth Rate 15.60  2 6.01  2 2 

M17 Nonperforming Loans/Total Loans 10.94  5 5.86  3 3 

M24 Net Income/Assets 11.56  4 4.76  4 4 

M25 Cash & Cash Equivalents/Total Shares and Deposits 13.59  3 4.40  6 5 

M32 Shares/Members 7.97  8 4.59  5 6 

M18 
Interest Income: Interest on Loans/Average Loans and 
Leases 

8.96  6 3.11  7 7 

M33 Net Long-Term Assets/Assets  8.90  7 2.87  8 8 

M5 Allowance for Loan Losses/Loans 7.41  9 2.70  9 9 

M11 Liquid Assets/Assets 6.72  13 2.40  10 10 

M27 Investments Growth 6.90  12 1.99  11 11 

M26 Loan Growth Rate 6.31  14 1.41  12 12 

M40 Net Worth/Assets 7.32  10 1.15  17 13 

M16 Net Capital/Assets 7.08  11 1.11  18 14 

M19 Cost of Shares and Deposits 6.02  16 1.22  15 15 

M23 Provision for Loan Losses/Average Assets 5.11  20 1.24  14 16 

M44 Log Delinquent Loans: 1-2 Months 4.82  22 1.35  13 17 

M41 Total Reserves/Assets  4.79  23 1.20  16 18 

M7 Net Charge Offs/Average Loans 5.49  18 1.06  21 19 

M10 Net Loans and Leases/Assets 4.97  21 1.11  19 20 

M9 Solvency Evaluation 6.09  15 0.85  26 21 

M39 Equity/Assets 5.94  17 0.87  25 22 

M28 Deposit Growth Rate 4.40  24 0.97  22 23 

M2 Age 3.37  27 1.09  20 24 

M15 Capital/Assets 5.12  19 0.62  30 25 

M31 Member Growth 3.96  26 0.93  24 26 

M35 Type of Website 2.57  30 0.95  23 27 

M22 Operating Expense/Average Assets 3.10  28 0.70  29 28 

M30 Net Capital Growth 2.47  32 0.84  27 29 

M37 CU Maintained Branches 4.16  25 0.47  35 30 

M29 Capital Growth 2.16  33 0.80  28 31 

M8 Loan Recoveries/Net Loan Charge Offs 2.56  31 0.62  31 32 

M43 Fixed Assets and OREO/Assets  2.87  29 0.53  33 33 

M42 Efficiency Ratio 1.32  35 0.60  32 34 

M20 Cost of Shares 1.42  34 0.44  37 35 

M13 Shares and Deposits/Assets 1.11  37 0.46  36 36 

M34 Fee Income/Average Assets 0.49  41 0.50  34 37 

M21 Gross Income/Average Assets 1.11  38 0.40  38 38 

M12 
Investments: Securities and Other Investments/Total 
Assets 

1.16  36 0.32  42 39 

M14 Membership Capital Corporate Cus/Assets  0.55  40 0.40  39 40 

M36 Members/Potential Members 1.06  39 0.39  40 41 

M6 Log Delinquent Loans: >=360 Days 0.05  42 0.36  41 42 

M3 Charter Type -0.90  43 0.07  43 43 

M1 Membership Description -1.00  44 0.03  44 44 
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Figure 6. One-Dimensional ALE Plots 
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Figure 7. Two-Dimensional ALE Plots 
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4.2 Performance of the RF-based Model 

A test was done to assess the effectiveness of the proposed RF framework in predicting Credit Union 

performance as Failed or Survived. All 44 variables are used in an OOB prediction test, resulting in a 

confusion matrix (CM) shown in Figure 8 (a). The overall accuracy achieved is 89.1%, with only a 

small percentage of misclassifications. 

An evaluation is conducted to determine the effectiveness of a Credit Union's future performance 

(Failed or Survived) classification using the proposed RF framework. The evaluation included an OOB 

prediction test that used the five most important features (M4, M38, M17, M24 and M25) identified 

earlier. The resulting CM for the Failed/Survived classification is shown in Figure 8 (b), with a slight 

decrease in classification accuracy compared to using all 44 variables. The overall accuracy rate 

dropped by 5.5%, with the accuracy rate for the Survived class decreasing by 3.6% and the accuracy 

rate of the Failed class falling by 7.3%. However, this analysis shows that using only the five factors 

(M4, M38, M17, M24 and M25) has a relatively small negative impact on prediction accuracy 

compared to using all 44 factors. 

      
Figure 8. Confusion Matrix (Training) 

(a) 44 Features; (b) 5 Features 

The established RF models are tested with test datasets and have an accuracy of 97.9% and 92.2% for 

the 44-variable and 5-variable models, respectively. The RF model with 44 variables had a 2.0% false 

negatives rate and an 8.8% false positive rate, while the RF model with 5 variables had a 7.8% false 

negatives rate and a 17.6% false positive rate. Focusing on the five most important factors does not 

significantly affect classification accuracy. 
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Figure 9. Confusion Matrix (Test) 

(a) 44 Features; (b) 5 Features 

4.3 Hazard Model Analysis 

In this section, we utilised the 29 variables listed in Appendix 6 to fit the Cox PH model, and the results 

are presented in Table 2. During this modelling section, all variables are standardized, and the survived 

Credit Unions are matched with the failed Credit Unions based on location (State) with the same 

number (144 survived Credit Unions and 144 failed Credit Unions are included). 

Higher liquidity (M25: Cash & Cash Equivalents/Total Shares and Deposits) increases the probability 

of failure, whereas the total assets (M4) is negatively significant, highlighting smaller Credit Unions' 

increased probability of failure. These findings align with the ALE plots' results in Figure 7. M18 

(Interest Income), representing the cost of borrowing from Credit Unions, is positively significant, 

which may reflect a ‘last ditch’ attempt to generate an increase in surpluses, or it may simply reflect 

the uncompetitive nature of the failing Credit Union’s business model. 

The positive coefficient of M12 (Investments) and the negative coefficient of M10 (Net Loans and 

Leases/Assets) indicate that Credit Unions with a higher percentage of deposits (lower percentage of 

loans) have a greater probability of failure, which may be due to their limited income from loans. M34 

(Fee Income/Average Assets) and M19 (Cost of Shares and Deposits) are positively significant, 

indicating that failed Credit Unions charge their members higher fees, but their savings members 

achieve a higher return. Combining these results with M18's discussed findings may reflect a bias 

towards savings members, the inappropriate nature of the business model, or perhaps the need to offer 

high rates to mitigate against members withdrawing their funds.  

Both M2 (Age) and M26 (Loan Growth Rate) are negatively significant, implying that younger Credit 

Unions are more likely to fail. Additionally, when the loans of a Credit Union stop growing (or even 

decline), it is also more likely to fail. Finally, M31 (Member Growth) and M36 (Members/Potential 
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Members) are both positively significant, indicating that the more a Credit Union has exhausted its 

potential membership, the more likely it is to fail. 

Table 2. Cox PH Model Results 

Variables Coef. Robust Std. Err. 95% Conf. Interval 
   Lower band Upper band 
M25 (Cash & Cash Equivalents/Total Shares and Deposits) 0.3035*** 0.1061 0.0957 0.5114 
M4 (Log Total Assets) -1.6430*** 0.1945 -2.0242 -1.2619 
M24 (Net Income/Assets) 0.0795 0.1234 -0.1623 0.3213 
M18 (Interest Income: Interest on Loans/Average Loans and 
Leases) 

0.2360** 0.1085 0.0233 0.4487 

M38 (Total Assets Growth Rate) -0.0182 0.1362 -0.2851 0.2486 
M17 (Nonperforming Loans/Total Loans) -0.0343 0.1472 -0.3227 0.2542 
M41 (Total Reserves/Assets) -0.1424 0.1249 -0.3872 0.1024 
M12 (Investments: Securities and Other Investments/Total 
Assets) 

0.1637** 0.0767 0.0134 0.3140 

M7 (Net Charge Offs/Average Loans) 0.0257 0.1069 -0.1838 0.2352 
M23 (Provision for Loan Losses/Average Assets) 0.0132 0.1145 -0.2113 0.2376 
M10 (Net Loans and Leases/Assets) -0.4153*** 0.0995 -0.6103 -0.2204 
M34 (Fee Income/Average Assets) 0.1708*** 0.0661 0.0412 0.3003 
M27 (Investments Growth) -0.0255 0.1213 -0.2613 0.2103 
M30 (Net Capital Growth) -0.2379 0.2147 -0.6587 0.1830 
M39 (Equity/Assets) -0.1795 0.1264 -0.4273 0.0683 
M2 (Age) -0.3824*** 0.1207 -0.6191 -0.1458 
M26 (Loan Growth Rate) -0.1755* 0.1064 -0.3841 0.0331 
M42 (Efficiency Ratio) 0.0189 0.0848 -0.1473 0.1851 
M19 (Cost of Shares and Deposits) 0.4605*** 0.1550 -0.1567 0.7643 
M28 (Deposit Growth Rate) 0.1130 0.1050 -0.0928 0.3188 
M8 (Loan Recoveries/Net Loan Charge Offs) -0.0455 0.0691 -0.1809 0.0898 
M31 (Member Growth) 0.2350*** 0.0747 0.0885 0.3815 
M3 (Charter Type) 0.0462 0.1382 -0.2247 0.3171 
M36 (Members/Potential Members) 0.2198* 0.1155 -0.0065 0.4460 
M43 (Fixed Assets and OREO/Assets) 0.0540 0.1029 -0.1476 0.2556 
Intercept -10.4413*** 0.9424 -12.2883 -8.5942 
ln_p 1.1322*** 0.0913 0.9533 1.3111 

***: 1% significance level; **:5% significance level; *:10% significance level 
p 3.1025 0.2832 2.5942 3.7104 
1/p 0.3223 0.0294 0.2695 0.3855 
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The Cox PH model only considers the main effects of features on predicted outcomes, ignoring 

interactions between pairs of features. To address this, the SHAP interaction technique is used to 

examine the RF-based model's second-order effect. The result is shown in Figure 10, highlighting the 

significant role of feature interactions, with the largest pure interaction effect found between M4 and 

M38. Adding an interaction term to reconstruct the Cox PH model emphasizes the importance of 

considering feature interactions (see Table 3). The SHAP interaction plot for M4 and M38 shows that 

the impact of the interaction on the predicted outcome is complex rather than linear (see Figure 11). 

Smaller Credit Unions with lower Total Assets Growth Rate are more likely to fail. 

 

Figure 10. SHAP Interaction 
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Table 3. Cox PH Model with the Interaction of M4 and M38 

Variables Coef. Robust Std. Err. 95% Conf. Interval 
   Lower band Upper band 
M25 (Cash & Cash Equivalents/Total Shares and Deposits) 0.2898*** 0.1061 0.0817 0.4978 
M4 (Log Total Assets) -1.6303*** 0.1968 -2.0118 -1.2489 
M24 (Net Income/Assets) 0.0725 0.1231 -0.1688 0.3138 
M18 (Interest Income: Interest on Loans/Average Loans and 

Leases) 
0.2341** 0.1098 0.0190 0.4492 

M38 (Total Assets Growth Rate) -0.1165 0.2148 -0.5375 0.3046 
M17 (Nonperforming Loans/Total Loans) -0.0247 0.1444 -0.3077 0.2584 
M41 (Total Reserves/Assets) -0.1688 0.1187 -0.4015 0.0639 
M12 (Investments: Securities and Other Investments/Total 

Assets) 
0.1547** 0.0748 0.0081 0.3014 

M7 (Net Charge Offs/Average Loans) 0.0470 0.1179 -0.1841 0.2781 
M23 (Provision for Loan Losses/Average Assets) 0.0431 0.1180 -0.1882 0.2744 
M10 (Net Loans and Leases/Assets) -0.4062*** 0.0982 -0.5988 -0.2136 
M34 (Fee Income/Average Assets) 0.1559** 0.0689 0.0209 0.2908 
M27 (Investments Growth) -0.0279 0.1198 -0.2628 0.2069 
M30 (Net Capital Growth) -0.2117 0.2261 -0.6548 0.2315 
M39 (Equity/Assets) -0.1731 0.1229 -0.4140 0.0678 
M2 (Age) -0.3756*** 0.1226 -0.6159 -0.1354 
M26 (Loan Growth Rate) -0.2033* 0.1179 -0.4344 0.0278 
M42 (Efficiency Ratio) 0.0280 0.0832 -0.1351 0.1911 
M19 (Cost of Shares and Deposits) 0.4766*** 0.1461 0.1902 0.7629 
M28 (Deposit Growth Rate) 0.1151 0.0975 -0.0760 0.3062 
M8 (Loan Recoveries/Net Loan Charge Offs) -0.0476 0.0669 -0.1786 0.0835 
M31 (Member Growth) 0.2264*** 0.0778 0.0740 0.3788 
M3 (Charter Type) 0.0523 0.1384 -0.2189 0.3236 
M36 (Members/Potential Members) 0.2214* 0.1153 -0.0045 0.4474 
M43 (Fixed Assets and OREO/Assets) 0.0446 0.1006 -0.1525 0.2418 
Interaction of M4 and M38 -0.1496 0.1736 -1.4898 0.1906 
Intercept -10.4151*** 0.9350 -12.2476 -8.5826 
ln_p 1.1319*** 0.0906 0.9543 1.3096 

***: 1% significance level; **:5% significance level; *:10% significance level 
p 3.1016 0.2811 2.5968 3.7046 
1/p 0.3224 0.0292 0.2699 0.3851 
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Figure 11. SHAP Interaction Plot 

Finally, this study uses an explainable machine learning technique and tests its robustness through 

SHAP dependence plots. The results show that SHAP captures more comprehensive relationships 

between variables (see Figure 12). For example, the effect of M10 (Net Loans and Leases/Assets) on 

the prediction outcome is not monotonic. While the Cox PH model only captures the negative 

correlation between the percentage of loans and Credit Union failure, the interpretable machine 

learning technique through SHAP can more accurately and comprehensively describe the prediction 

decision process. 

5. Conclusion 

Credit Unions are often assessed using monitoring systems like PEARLS and CAMEL, which are also 

used for banks. These systems help manage risk and regulation by providing a framework to compare 

the performance of individual Credit Unions against sectoral standards. To expand the PEARLS 

framework, our study develops a RF model based on the PEARLS monitoring system and findings 

from a literature review of financial institution failure. Our model predicts Credit Union failure one 

year in advance with high levels of accuracy and identifies the decision-making process involved in 

generating the prediction. 

Unlike other machine learning research, we use interpretable machine learning to determine the 

decision-making process of the prediction. This allows us to analyse feature importance, feature 

interactions, ALE, and Shapley value-based approaches, which all provide valuable insights. Our study 

proves the predictive superiority of the RF model when benchmarked against seven alternative 

classification methods. We also use an extensive dataset covering economic growth and stagnation 

periods to ensure the results are robust to different points in the economic cycle. 

Our analysis identifies the five most important features for the RF model, namely Log total assets, 

Total assets growth rate, Nonperforming loans/Total loans, Net income/Assets, and Cash & cash 

equivalents/Total shares and deposits. These features measure size, size growth, return on assets, bad 

debt and liquidity. Using only these essential features, the RF model still achieved a high-test set 

accuracy of 92.2%. 



 

25 

 

Our study offers a means for organisations like the US Credit Union Regulator and the national 

representative body to establish an accurate assessment of future Credit Union failure one year in 

advance. This early warning system allows at-risk Credit Unions time to undertake corrective action 

or identify a merger partner in order to protect the NCUSIF. 

  

  

 
Figure 12. SHAP Dependence Plots 
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Appendix 

Appendix 1. Application of Machine Learning in Credit Unions 
Author Journal Methodology Countries Time period Main results 
Desai et al. 

(1997) 
IMA Journal of 

Management 

Mathematics 
Feedforward neural networks, 

genetic algorithms, linear 

discriminant analysis and 

logistic regression 

US 1988 to 1991 The neural network only performs significantly 

better in the classification of poor loans since 

there are no important uniform nonlinear 

variables in other datasets. 
Tan and 

Dihardjo 

(2001) 
Managerial 

Finance 
ANN, Probit model Australia 1989 to 1991 The use of ANN models can provide early 

warning signals to Credit Unions that are in the 

early stages of financial stress, thereby helping 

them avoid future financial difficulties (as 

much as possible). 
Harris 

(2013) 
Expert Systems 

with Applications 
SVM Barbados 1997 to 2012 The performance of the model built using 

Broad default definitions is superior to the 

model developed using Narrow default 

definitions. The introduction of quantitative 

credit risk models can improve the credit risk 

assessment of Barbados-based financial 

institutions. 
Gozer et al. 

(2014) 
African Journal of 

Agricultural 

Research 
ANN, SVM Brazil 2013 In most cases, the LibSVM algorithm of SVM 

achieves the best results in all performance 

evaluations. The SVM is superior as a binary 

classifier for predicting bankruptcy. 
Paula et al. 

(2019) 
RAUSP 

Management 

Journal 
RF, logit and ordinary least 

squares regression 
Brazil 2015 to 2016 Compared with logit and ordinary least squares 

regression models, the RF model is superior in 

estimating credit and profit scores for Credit 

Unions. 
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Appendix 2. Variable List 

Protection Effective Financial Structure Rates of Return and Cost 

M5: Allowance for Loan 

Losses/Loans 

M10: Net Loans and Leases/Assets M18: Net Loan Income/Average 

Net Loan Portfolio 

M6: Log Delinquent Loans: >= 360 

Days 

M11: Liquid Assets/Assets M19: Total Interest Cost on 

Savings Deposits/Avg. Savings 

Dep. 

M7: Net Charge-Offs/Average 

Loans 

M12: Financial Investments/Assets M20: Total Int. (Dividend) Cost on 

Shares/Avg. Member Shares 

M8: Loan Recoveries/Net Loan 

Charge Offs 

M13: Shares and Deposits/Assets M21: Gross Income/Assets 

M9: Solvency Evaluation4 M14: Member Share Capital/Assets M22: Operating Expense/Assets 

 M15: Institutional Capital/Assets M23: Provision for Loan 

Losses/Assets 

 M16: Net Institutional 

Capital/Assets 

M24: Net Income/Assets 

Signs of Growth Other (Identified from Literature 

Review) 

Asset Quality 

M26: Loan Growth Rate5 M1: Membership Description6 M17: Nonperforming Loans/Total 

Loans 

M27: Investments Growth M2: Age7 Liquidity 

M28: Deposit Growth Rate M3: NCUA Charter Type8 M25: Cash & Cash 

Equivalents/Total Shares and 

Deposits 

M29: Capital Growth M4: Log Total Assets  

M30: Net Capital Growth M32: Shares/Members9  

M31: Member Growth M33: Net Long-Term 

Assets/Assets 

 

M38: Total Assets Growth Rate M34: Fee Income/Assets  

 M35: Type of Website10  
 M36: Members/Potential Members  

 M37: Maintained Branches  

 M39: Equity/Assets  

 M40: Net Worth/Assets  

 M41: Total Reserves/Assets  

 M42: Efficiency Ratio11  

 M43: Fixed Assets and 

OREO/Assets12 

 

 M44: Log Delinquent Loans: 1-2 

Months 

 

 
4 Total assets less distributions of borrowings plus subordinated debt included in net worth less accounts payable and 

other liabilities less appropriation for non-conforming investments less accrued dividends payable on shares as a percent 

of total shares. 
5 The annualized change in loans and leases calculated as current period loans and leases less prior period loans and 

leases as a percent of prior period loans and leases. 
6 Dummy variable, multiple common bonds designated as 1, others common bond types designated as 0. 
7 The length of establishment of the Credit Unions as of October 2020 (in years). 
8 Dummy variable, federally owned designated as 1, state-owned designated as 0. 
9 Number of share accounts as a multiple of members. 
10 The type that best describes your website: informational designated as 1, interactive designated as 2, transactional 

designated as 3, no website designated as 0. 
11 Noninterest expense as a percent of the sum of net interest income after provisions, noninterest income, and provisions 

for loan and lease losses. 
12 Fixed assets plus other real estate owned assets as a percent of assets. 
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Appendix 3. Descriptive Statistics (Minimum, Median, Mean, Maximum, and Standard Deviation (SD)) of A. Failed; B. Survived) 

 Variables M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 

A 

Min 1: 
22.8% 

17.0 1: 
69.3% 

1.4 0.1 0.0 -123.1 -300.0 100.3 -3.9 0.7 0.0 21.6 0.0 

Median 60.0 3.3 2.5 0.9 1.4 5.4 114.6 43.8 44.1 8.0 85.9 0.8 

Mean 0: 
77.2% 

57.19 0: 
30.7% 

3.4 6.7 1.0 1.9 -0.1 124.3 43.5 43.9 18.3 81.6 1.5 

Max 98.0 6.2 166.7 5.5 94.1 350.0 357.1 97.8 97.8 99.5 99.2 41.0 

SD  17.63  0.9 17.1 0.9 23.3 97.2 31.4 27.3 26.9 26.6 13.3 4.7 

B 

Min 1: 
24.5% 

17.0 1: 
53.4% 

2.1 0.0 0.0 -36.0 -390.9 102.9 1.5 0.3 0.0 22.8 0.0 

Median 67.0 4.8 0.7 1.4 0.3 0.2 112.6 60.9 16.6 0.1 87.5 0.2 

Mean 0: 
75.5% 

68.2 0: 
46.6% 

4.9 1.0 1.4 0.5 1.4 114.1 59.1 19.1 1.0 86.4 0.4 

Max 120.0 7.4 44.4 4.7 61.2 350.0 195.0 100.0 81.4 160.5 96.7 3.4 

SD  14.8  0.7 1.2 0.8 2.2 23.7 6.2 17.5 11.3 5.4 4.8 0.3 

 

 Variables M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 

A 

Min 2.9  1.3  0.0  -0.1  -7.4  -7.4  -1.2  -7.8  -9.4  -10.2  -3.4  -98.3  -400.0  -394.2  -183.8  

Median 13.0  11.9  2.3  1.9  1.2  1.1  5.8  4.2  0.6  -0.1  16.4  -3.3  -5.8  -3.1  -0.4  

Mean 15.4  14.2  5.9  2.3  1.8  1.7  6.0  4.6  1.8  -0.3  24.2  -1.1  -38.9  -3.0  -6.7  

Max 90.2  80.4  76.9  33.3  78.8  78.8  24.7  21.4  59.3  4.0  182.1  263.2  400.0  293.7  42.1  

SD 9.9  9.5  9.9  2.4  5.1  5.1  2.7  2.9  5.7  1.3  24.6  34.9  149.3  38.7  28.7  

B 

Min 3.0  1.3  0.1  0.8  -7.4  -7.4  -1.2  -7.8  -9.4  -8.3  -3.4  -98.3  -396.2  -394.2  -183.8  

Median 13.8  12.8  4.0  2.1  1.0  1.0  5.5  4.1  1.0  -0.1  17.3  -8.6  -19.2  -6.0  -3.3  

Mean 18.7  17.1  9.7  3.7  2.3  2.3  5.8  4.9  3.1  -0.5  30.9  -6.1  -64.8  -9.3  -12.2  

Max 90.2  80.4  76.9  100.0  78.8  78.8  24.7  21.4  59.3  4.0  182.1  215.4  311.3  293.7  40.6  

SD 14.1  13.6  14.6  9.5  7.6  7.6  3.6  4.0  9.0  1.8  33.5  43.5  144.7  59.7  37.7  
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 Variables M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40 M41 M42 M43 M44 

A 

Min -319.4  -217.1  0.3  -0.3  -1.4  0: 58.3% 0.3  0.0  -59.2  -0.3  1.3  0.0  -200.0  0.0  0.0  

Median 1.7  -2.1  1.2  2.8  0.7  1: 18.1% 41.0  1.0  -0.6  11.9  11.9  0.7  88.0  0.8  1.0  

Mean -7.9  -5.1  1.3  9.1  1.1  2: 3.9% 43.3  1.5  -0.3  14.1  14.2  1.2  90.2  1.8  1.0  

Max 66.8  164.3  2.2  108.8  42.3  3: 19.7% 100.0  32.0  51.8  78.4  78.4  13.0  400.0  16.8  2.9  

SD 37.7  30.1  0.3  13.1  2.6   27.9  2.1  12.1  9.5  9.4  1.5  53.0  2.4  0.7  

B 

Min -319.4  -217.1  0.3  -0.3  -0.9  0: 9.3% 0.1  0.0  -38.5  0.3  2.8  0.0  -289.8  0.0  0.0  

Median -2.0  -3.2  1.0  1.5  0.8  1: 3.8% 18.0  2.0  4.4  11.0  11.1  0.4  80.1  1.9  1.5  

Mean -18.5  -8.0  1.2  8.8  1.1  2: 2.6% 27.7  4.6  5.4  11.9  12.0  0.5  80.9  2.1  1.6  

Max 66.7  100.5  2.2  108.8  16.7  3: 84.3% 100.0  131.0  348.4  49.1  48.7  8.7  370.0  17.4  4.1  

SD 54.4  36.0  0.3  16.8  1.8   26.3  7.2  9.4  4.2  4.1  0.5  18.7  1.7  0.7  

 

 

 

 

 

 



 

33 

 

Appendix 4. Random Forest 

Derived from the ensemble-learning framework, RF combines multiple individual decision trees 

(DTs). A random bootstrap dataset should well train each DT. Due to the superiority of nonparametric 

and simplification, the Classification and Regression Trees (CART) are usually adopted as the DTs of 

RF (Liaw and Wiener, 2002). Figure 13 provides a simple diagram describing the RF classifier's 

structure. 

  

Figure 13. Structure of RF Classification Model 

In terms of classification, let the training set 𝑇𝑆 = ሼሺ𝑋1, 𝑌1ሻ, ሺ𝑋2, 𝑌2ሻ,⋯ , ሺ𝑋𝑚, 𝑌𝑚ሻሽ  include m 

observations. 𝑋𝑖 = ሺ𝑋𝑖1, 𝑋𝑖2, ⋯ , 𝑋𝑖44ሻ represents the input vector that has 44 features in the case of 

our study. 𝑌𝑖 refers to the output vector. The procedure used to conduct an RF classifier is described 

as follows (Liu et al., 2021): 

1. Procedure RF model training 

2. For 𝑘 = 1 to 𝐾 (𝐾 is the number of DTs): 

3. Formulate a bootstrap sample 𝐵𝑆𝑘 with 𝑀 size from 𝑇𝑆 (Training Set); 

4. Use the formulated 𝐵𝑆𝑘 to fit a tree 𝐷𝑇𝑘:  

A. Split a node with all observations from 𝐵𝑆𝑘. 

B. Repeat the process below on each unsplit node recursively: 

 a). Select 𝑛 features randomly from 44 available features (𝑛 ≤ 44). 

 b). Discover the split way with the best impurity from all possible splits of 𝑛 features. 

 c). Split the node into two sub-nodes based on the obtained split way from step b).  

5. Formulate the RF by combining all trained DT learnersℎ𝑘ሺ∙ሻ. 

6. end procedure 

7. RF classification 

8. For a new observation 𝑋𝑁, the outcome of classification 𝑅𝐹ሺ𝑋𝑁ሻ is obtained by: 

𝑅𝐹ሺ𝑋𝑁ሻ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌 σ 𝐼 ቀℎ
~

𝑘ሺ𝑋𝑁ሻ = 𝑌ቁ𝐾
𝑘=1 , 
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The prediction result, which adopts 𝑋𝑁 as the input of the 𝑘th DT., 𝐼ሺ∙ሻ is a zero-one judgement 

with the rule of 𝐼 ቀℎ
~

𝑘ሺ𝑋𝑁ሻ = 𝑌ቁ = 1. 𝑎𝑟𝑔𝑚𝑎𝑥
𝑌
 Outputs the class with the highest count number 

from all DTs. 

9. end procedure 

The primary target of the RF training phase is to build numerous de-correlated DTs. Each DT is trained 

from its specific bootstrap samples, thereby increasing the diversity of DT. Additionally, this method 

effectively reduces the correlations among DTs. In this context, the DTs within RF can be well-trained 

without pruning, resulting in a relatively small computational burden. Meanwhile, the noise immunity 

of RF is also improved by averaging various de-correlated DTs. Moreover, for each DT, some training 

data is reused in the bootstrap sample due to the bagging strategy, thus causing some other observations 

not to be chosen to fit this DT. These observations are called out-of-bag (OOB) samples and generally 

account for nearly 30% of all training datasets. Therefore, these OOB samples not used in the RF 

training process can be used to assess the classification effect of each DT after training. In this way, 

the RF can realise unbiased estimations without needing an external dataset. (Further explanation: 

Some machine-learning methods may need another set of data to realise validation in the training 

process, but sometimes there will be a significant difference between the two sets of data, which may 

lead to biased estimations. However, the RF with OOB can realise validation in the training process 

without needing another dataset as it uses the same dataset for training and validation. So, the RF can 

realise unbiased estimations without needing an external dataset). Furthermore, according to this built-

in cross-validation behaviour, OOB samples can relieve the overfitting issue, thereby improving RF 

generalisation. 
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Appendix 5. Comparisons with Other Approaches 

Test Name Training Set False Negatives Rate False Positive Rate Test Set False Negatives Rate False Positive Rate 

Failed/Survived 
with 44 variables 

Random Forest (OOB) 89.1% 10.9% 10.9% 
97.9% 2.0% 8.8% Random Forest (Cross - 

validation) 
91.5% 6.8% 10.2% 

Boosted tree 89.1% 4.5% 17.3% 94.9% 5.0% 10.4% 
Decision tree (Fine tree) 78.6% 19.1% 23.6% 81.8% 19.0% 25.0% 
SVM (Medium Gaussian) 75.9% 13.6% 34.5% 84.6% 15.0% 31.9% 
Logistic regression 75.7% 31.6% 17.1% 84.6% 15.5% 9.8% 
Linear discriminant 78.9% 28.9% 13.2% 83.8% 16.2% 17.8% 
Naïve Bayes (Kernel) 83.6% 14.5% 18.4% 84.1% 15.9% 17.8% 
KNN (Cosine) 85.5% 13.2% 15.8% 81.3% 18.7% 19.6% 

Failed/Survived 
with 5 variables Random Forest (OOB) 83.6% 14.5% 18.2% 92.2% 7.8% 17.6% 
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Appendix 6. Features Used to Build Cox PH Model 

1 M25 Cash & Cash Equivalents/Total Shares and Deposits 

2 M4 Log Total Assets 

3 M24 Net Income/Assets 

4 M18 Interest Income: Interest on Loans/Average Loans and Leases 

5 M38 Total Assets Growth Rate 

6 M17 Nonperforming Loans/Total Loans 

7 M41 Total Reserves/Assets 

9 M12 Investments: Securities and Other Investments/Total Assets 

10 M7 Net Charge Offs/Average Loans 

11 M23 Provision for Loan Losses/Average Assets 

13 M10 Net Loans and Leases/Assets 

14 M34 Fee Income/Average Assets 

15 M27 Investments Growth 

16 M30 Net Capital Growth 

17 M39 Equity/Assets 

18 M2 Age 

19 M26 Loan Growth Rate 

20 M42 Efficiency Ratio 

21 M19 Cost of Shares and Deposits 

22 M28 Deposit Growth Rate 

23 M8 Loan Recoveries/Net Loan Charge Offs 

24 M31 Member Growth 

26 M3 Charter Type 

28 M36 Members/Potential Members 

29 M43 Fixed Assets and OREO/Assets 
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Appendix 7. SHAP Summary Plot 
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Appendix 8. SAGE Feature Importance Plot 
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