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ABSTRACT

This paper presents a robust new finding that delta-hedged equity option returns include
a volatility risk premium. To separate volatility risk premia from confounding effects, we
estimate conditional quantile curves of implied volatilities using machine learning. We find
that a zero-cost trading strategy that is long (short) in the portfolio with low (high) implied
volatility conditional on the options’ moneyness and realized volatility produces an econom-
ically and statistically significant average monthly return. Using conditional quantile curves
not only helps in distinguishing volatility risk premia from other effects, most notably real-
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1 Introduction

Volatility is the single most important characteristic of a stock driving the prices of
corresponding option contracts. Returns on stock options should thus carry a risk premium
for changes in volatility. Likewise, any misestimation of an underlying stock’s volatility
and its dynamics should lead to a mispricing of options which traders can exploit. Yet,
despite its ubiquity in option pricing models, the role volatility (mispricing) and volatility
risk play for the cross-section of option returns remains unclear: while some studies have
found no evidence for the existence of a volatility risk premium (see, e.g., Carr and Wu,
2009; Driessen et al., 2009), others have shown that volatility mispricing as well as (realized
and idiosyncratic) volatility significantly affect the cross-section of option returns (see, e.g.,
Bollerslev et al., 2009; Goyal and Saretto, 2009; Cao and Han, 2013; Cao et al., 2019; Hu
and Jacobs, 2020).

In this paper, we empirically test for the existence of a volatility risk premium (VRP)
in the cross-section of option returns. We start our analysis by first documenting poten-
tial biases in analyses of the volatility-return relation that arise when relying on standard
methods in asset pricing: portfolio sorts and cross-sectional regressions. As an alternative,
we propose to use nonparametric methods from the field of machine learning to estimate
conditional quantile curves of implied stock option volatilities. We condition on a number of
characteristics that would otherwise cloud the effect of implied volatility on option returns.
Most importantly, we control for the stock’s realized volatility and option moneyness. Doing
so helps us to carve out the volatility risk premium in the cross-section of option returns.

Using the cross-section of option returns for US equities between January 1996 and June
2019, we find that call and put option portfolio returns exhibit a strong relation with the
volatility risk premium. We sort options on their implied volatility conditional on their
realized volatility. This yields portfolios with increasing deviations between realized and
implied volatilities with average levels of realized volatility remaining constant. We use

this to proxy for the volatility risk premium. A strategy that is long (short) in high (low)



deviations between realized and implied volatilities yields returns that are both economically
and statistically significant. This result holds for call and put delta-hedged and raw option
returns for both at the money (ATM) options and options of arbitrary moneyness. For
example, average monthly delta-hedged returns of 1-month ATM options are 2.0 % for call
and 1.7 % for put contracts with (monthly) Sharpe ratios of 0.842 and 0.796, respectively.

By sorting options on their implied volatility conditional on realized volatility and op-
tion moneyness, we can easily extend our trading strategy to options of arbitrary moneyness
while eliminating potential biases arising from systematic differences in realized volatility
or option moneyness (and thus option liquidity). Again, this yields delta-hedged and raw
option returns that are highly economically and statistically significant. For example, av-
erage monthly delta-hedged returns from a long-short trading strategy based on 1-month
options of arbitrary moneyness are 2.4 % for call and 2.5 % for put contracts with (monthly)
Sharpe ratios of 0.816 and 0.844, respectively. Our results are robust to controlling for fur-
ther moments of the underlyings’ return distribution, alternative estimators of conditional
quantiles, moderate transaction costs (delta-hedged returns) and the inclusion of options on
dividend-paying stocks.

Why do we find such strong evidence for the existence of a VRP when results of previous
empirical studies have been ambiguous at best? One possible answer lies in our proposed
use of nonparametric methods to form factor-mimicking portfolios based on characteristics
conditional on a set of control variables. The standard technique in empirical finance for
this purpose has been the sorting of portfolios on certain characteristics of assets. It is
frequently used to test the assumption of pricing models that expected asset returns are a
monotonic function in one or more idiosyncratic characteristics. This common practice of
forming uni- or multivariate fractiles dates back to seminal papers on the cross-section of
equity returns which, among others, include the works of Basu (1977); Banz (1981); De Bondt
and Thaler (1985); Jegadeesh (1990); Fama and French (1992), and Jegadeesh and Titman

(1993). Since then, portfolio sorting has been a methodological mainstay in empirical asset



pricing, because it does not require the assumption of a linear relation between expected
returns and characteristics, and because differences in the returns on the top and bottom
fractile portfolios are easily interpreted as the profits from an implementable trading strategy.
As intuitive as it may be, however, portfolio sorting does not come without shortcomings.
While univariate portfolio sorts on one characteristic do not allow the economist to control
for other asset characteristics, multivariate (conditional) sorts quickly become unfeasible for
more than two characteristic-based factors due to the curse of dimensionality.

Our approach, in contrast, uses nonparametric methods from the field of machine learning
to estimate the conditional quantile curves of implied volatilities while at the same time
controlling for several characteristics. Thus it possesses several appealing features that should
make it favorable to standard portfolio sorts and non-/semiparametric regression methods
alike. First, using machine learning algorithms to estimate quantile curves allows for the
data-efficient nonparametric modeling of the multivariate distribution of asset returns and
characteristics. In contrast to standard (conditional) portfolio sorts, our method should
alleviate at least in part the concern of “empty portfolios” which eventually arises when
sorting on too many characteristics (see, e.g., Goyal, 2012).

Second, as a remedy to the “empty portfolio” problem, many researchers have addition-
ally performed multivariate regressions to test whether a certain characteristic is priced.
While these cross-sectional regressions allow the inclusion of a large number of covariates,
they also suffer from two drawbacks that make them less appealing in our setting. Standard
as well as semiparametric regression methods (see, e.g., Connor and Linton, 2007; Connor
et al., 2012; Cattaneo et al., 2020) assume additive separability between the explanatory
variables in asset pricing models (in addition to a linear relation between characteristics and
returns). Employing such standard models leads to a severe bias in the measurement of
the VRP due to the nonlinear nature of the relation between implied and realized volatility.
Moreover, results from cross-sectional regressions only yield information on long-short strate-

gies that involve trading in all securities with potentially highly varying portfolio weights.



Our proposed nonparametric approach circumvents both these problems: we make no as-
sumption on the functional form of the relation between implied and realized volatility, and
our approach yields a trading strategy that can easily be implemented.

Our paper is related to an increasing number of empirical studies on the relation between
option returns and characteristics of the underlying stocks.! Coval and Shumway (2001)
were among the first to look at the cross-section of expected option returns. Studying index
options, they find that systematic stochastic volatility is priced in option returns. In a
related study, Driessen et al. (2009) show that correlation risk is priced in both index and
individual options but find no evidence for the existence of a VRP. Conversely, using model-
free estimates of implied volatilities, Bollerslev et al. (2009) show in their study that stock
returns include a VRP. Finally, Huang et al. (2019) study the pricing of volatility of volatility
risk in index options. All of the studies, however do not test for the existence of VRP in
expected option returns and usually concentrate on index options rather than individual
options.

More recent studies have concentrated on the effects of volatility, volatility risk, and
volatility mispricing on the cross-section of expected option returns. In one of the first
studies in this field of research, Goyal and Saretto (2009) show that large differences between
realized and implied volatilities for at-the-money options are associated with economically
and statistically significant monthly returns. Their use of linear differences to proxy for
potential volatility mispricing, however, ultimately leads to a portfolio strategy that also
(at least partially) invests in realized volatility. Our approach to measure the volatility risk
premium by the use of conditional quantile curves builds on their study. After controlling
for realized volatility and allowing for arbitrary moneyness, our results confirm the initial
findings by Goyal and Saretto (2009) and make an even stronger case for the existence of a

VRP. This is important and reassuring at the same time, as more recent studies have shown

'Recent studies on the pricing of stock and option characteristics in the cross-section of expected option
returns include, but are not limited to, the studies by Baele et al. (2018); Cao et al. (2019); Andreou and
Ghysels (2020); Eisdorfer et al. (2020); Cao et al. (2021).
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that idiosyncratic (see Cao and Han, 2013) and realized volatility (see Hu and Jacobs, 2020)
by themselves drive expected option returns, questioning previous findings on the effect of
volatility mispricing on option returns.

Methodologically, our paper is related to a small but growing number of papers that
aim to improve standard methods in empirical asset pricing. For example, Patton and
Timmermann (2010) were among the first to point out the shortcomings of portfolio sorts
and standard tests of monotonicity in asset pricing. Similarly, Connor and Linton (2007),
Connor et al. (2012), and Cattaneo et al. (2020) propose semi- and nonparametric mod-
els as alternatives for portfolio sorts and cross-sectional regressions. In contrast to our
study, however, their models usually concentrate on nonlinear relations between returns and
characteristics, and not between covariates. Moreover, none of these studies look at the
cross-section of option returns. We complement this field of research by proposing the use
of conditional quantile curves as an alternative to traditional portfolio sorts and applying it
for the first time to expected option returns. Finally, our paper is also related to a growing
number of studies that propose the use of machine learning algorithms in empirical asset
pricing. For example, Moritz and Zimmermann (2016) use tree-based conditional portfo-
lio sorts and model-averaging to identify the most relevant factors of the famous “factor
z00” (cf. Cochrane, 2011) that drive stock returns, while Gu et al. (2020) employ trees and
neural networks to forecast returns. Our work complements these studies by proposing the
use of data-efficient machine learning algorithms to form conditional portfolio sorts in high
dimensions.

The rest of the paper is organized as follows. The next section 2 discusses the measure-
ment of the volatility risk premiums in option returns as well as our methodology. Section 3

presents our empirical study. We discuss robustness checks in Section 4. Section 5 concludes.



2 Capturing the volatility risk premium

2.1 Volatility risk premium and volatility mispricing

We start our analysis by revisiting common definitions for the volatility risk premia of
individual stocks from the related literature. For example, Cao and Han (2013) define the

volatility risk premium of stock ¢ in time period ¢ as
VRP, = RV, — IV, (1)

where RV}, is realized return volatility and IV} is the implied volatility of the stock extracted
from corresponding options (see also Jiang and Tian, 2005; Bollerslev et al., 2009; Carr
and Wu, 2009; Driessen et al., 2009). Similarly, Goyal and Saretto (2009) consider the log

difference

VMPLt = log R‘/;,t — log ]‘/;,t (2)

between realized (historical or current) and implied volatility and interpret large values of
VM P,;; as indicative of volatility mispricing.

From the definitions in Equations (1) and (2) it becomes clear that tests of the exis-
tence of a VRP in option returns critically depend on whether one is able to control for
the level of realized volatility.? To this end, previous studies have traditionally relied on
(conditional) portfolio sorts and cross-sectional regressions. However, controlling for addi-
tional asset characteristics (such as realized volatility) via conditional portfolio sorts quickly
becomes infeasible due to the curse of dimensionality (Stone, 1980).% Beyond that, portfolio

sorts exhibit further shortcomings, some of which we want to illustrate in the following Sec-

2The findings of Hu and Jacobs (2020) show that option raw returns are significantly affected by realized
volatility.

3For example, while sorting on one characteristic and controlling for another via a double-sort might still
be practicable, controlling for two or more covariates via triple-, quadruple-sorts etc. is almost always not
possible.



tion 2.2. As a remedy, we advocate for replacing conditional portfolio sorts with conditional

quantiles, of which we discuss the details in Section 2.3.

2.2 Replacing portfolio sorts by conditional quantiles

To illustrate the potential weaknesses of conditional portfolio sorts, we simulate 200
observations (x;,y;) according to Y = % - X + %o - X - €, where ¢ denotes the standard
normal distribution and X follows a Beta(5,5) distribution with X and e being statistically
independent from each other. That is, we assume a linear relation between X and Y with
heteroskedastic errors.

Figure 1 illustrates quintile portfolios from a conditional double-sort of the data (first on

X, than on y).
— Insert Figure 1 about here. —

Therefore, we first sort the observations into five portfolios according to their x-values.
To obtain portfolios of equal size, this is done by assigning the observations with z-values
below the (unconditional) empirical 20 % quantile of all z;’s ¢ = 1,...,200 into portfolio 1,
observations between the 20 % and 40 % quantile into portfolio 2, etc. In each of these five
portfolios, we then sort on y according to the (unconditional) empirical 20 %, 40 %, etc.
quantile of all y-values within portfolio 1. This is subsequently repeated for portfolios 2 to
5. Based on this double-sort, we next form long and short portfolios of observations with
low and high y-values, respectively, while at the same time controlling for . Thus, in each
of the five portfolios we obtain by sorting on z, we choose the observations corresponding to
the y-values in the lower quintile for the long and in the upper quintile for the short portfolio
(see the shaded areas in Figure 1).

Figure 2 illustrates that by combining the 20 % quantiles in each of the five portfolios we
obtain a step function (black dashed line) which can be understood as an approximation to

the true conditional 20 % quantile curve of Y given X (black solid line). The same is true for



the conditional 80 % quantile curves (red lines). It is obvious from Figure 2 that portfolio
sorts provide a quite coarse approximation to the true conditional quantile curves. As a
consequence, the long and short portfolios derived from the double-sort exhibit systematic
differences in z, see Figure 3. The black dashes on the x-axis correspond to observations in
the long portfolio while the red dashes correspond to observations in the short portfolio. If
controlling for x had been successful, the black and red dashes would be mixed randomly
along the z-axis. However, there are various clusters of red and black dashes with a clear
trend of observations in the long portfolio tending to lower and observations in the short
portfolio tending to higher z-values. That is, although long and short portfolios were build
on a double-sort to control for x, the results of a long (short) strategy that is low (high) in

y might still be biased by systematic differences in z.
— Insert Figures 2 and 3 about here. —

To mitigate this bias, we could of course simply increase the number of portfolios and
sort the z- and y-values into, say, 10 portfolios each yielding 100 double-sorted portfolios.
However, we would still try to approximate the true conditional quantile curves (which are
linear in our example) with piecewise constant step functions, which is far from optimal.
In addition, if we wanted to control for an additional covariate z, we would be required
to do a triple-sort leading to 1000 portfolios. However, this is infeasible based on only
200 observations as this would lead to a large number of empty portfolios. Consequently,
we would be forced to reduce the number of portfolios to, say, 5 for each covariate again.
Nevertheless, even if we accepted this coarse approximation, another difficulty is posed by
the fact that no fragments of observations can enter into the quintile portfolios. By sorting
on z and z we get 25 portfolios containing 200/25 = 8 values each. When finally sorting
on y, we would end up with 1.4 observations in the quintile portfolios which is again not
feasible. As a consequence, if we decided to consider only one (out of eight) observations in
each of the 25 portfolios, we would build long and short portfolios based on 12.5 % of all

observations. If we opted for two observations, the quintile portfolios would be formed based



on 25 % of observations. That is, conditional portfolio sorts are inflexible with regard to the
percentage of observations that enter into the extreme portfolios, especially when the total
number of observations is low.

Based on the true conditional quantile functions (as illustrated in Figure 2) we are able
to form long (short) portfolios with low (high) y-values while at the same time perfectly
controlling for x. Additionally, we would be very flexible with regard to the percentage
of observations entering into the long and short portfolio. Of course, in practice, we do
not know the true conditional quantile curves. Instead we have to estimate them based on
the data at hand. However, conditional portfolio sorts do not use the data efficiently when
deriving conditional quantile curves. This is highlighted in Figure 2 illustrating that the true
quantile curves are approximated with piecewise constant step functions requiring a large
number of portfolios to achieve an acceptable fit. As a consequence, one can usually control
for only one or at most two characteristics.

As an alternative to portfolio sorts, there exist various methods specifically designed for
the estimation of conditional quantiles providing a more data-efficient way of estimation
without imposing restrictions on the functional form of the quantile functions. In addition
to the advantages mentioned above, this allows for including more control variables.* As the
objective of this paper is to advocate for replacing characteristic-sorted portfolios with port-
folios sorted based on conditional quantile estimates and not to promote a specific estimator,

we only give a short introduction into the topic in the next Section.

40f course, due to the curse of dimensionality the number of variables one can efficiently control for with
our nonparametric approach will still be limited to a low single figure in most applications. However, our
approach can be seen as a way of extending the applicability of portfolio sorts to control for more covariates.
For example in Section 4.1, conditionally sorting on options’ implied volatility as well as realized volatility,
moneyness, and skewness of the underlyings’ return distribution would require the usage of quadruple sorts
which is infeasible for the major part of our option sample in the empirical study. However, we can easily
consider these control variables within our proposed approach.



2.3 Estimation of conditional quantiles

It is standard practice to (linearly) approximate the conditional mean function x
E(Y|X = z). This is done by minimizing the squared errors. By instead minimizing the
absolute errors one can derive the conditional median function, i.e., the conditional 50 %
quantile function. This result generalizes naturally to conditional quantiles at arbitrary
confidence levels. The conditional o quantile function is obtained by minimizing the so-

called check-error of the residuals, where the check-function p, is given as

—(1—a)z forz <0,
Pal(2) = (3)
az for z > 0.

That is, depending on the confidence level «, the residuals (deviations of observations from
the estimated conditional quantiles) enter into the error term that has to be minimized
asymmetrically with weights 1 — « and «, respectively. Building on this result Koenker and
Bassett (1978) introduce linear conditional quantile estimators. Since the appearance of this
seminal paper various other estimators have been proposed. In particular, nonparametric
estimators appear promising as they do not require to make any assumptions about the
functional form of the quantile curves, see, e.g., Kraus and Czado (2017) and the references
therein.?

The problem of estimating conditional quantiles nonparametrically has been addressed
with different techniques. For example Kraus and Czado (2017) propose an estimator based
on likelihood optimal D-vine copulas, in the following referred to as the copula estimator. The
estimator models multivariate dependencies based on so-called pair-copula constructions, see

the original paper for more details.

Starting with the k-nearest neighbor (kNN) estimator due to Bhattacharya and Gan-

®Results from our empirical study highlight the necessity to account in particular for non-linear depen-
dencies between implied and realized volatility as well as heteroskedasticity. Note that while in general we
speak of conditional quantiles, in the case of conditioning on only one variable, we get conditional quantile
curves. Therefore, we will use these terms interchangeably.
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gopadhyay (1990) conditional quantile estimation has also been addressed within the realm
of (unsupervised) machine learning. More recently, Charlier et al. (2015b) introduced an
estimator that is derived from the concept of optimal quantization. Loosely speaking, this
algorithm efficiently uses the data at hand by identifying clusters of observations of covariates
via unsupervised machine learning and deriving empirical quantiles of the response variable
within the clusters, see Charlier et al. (2015b,a) for details. In the following we will refer to
this estimator as the quantization estimator.

Building on the quantization estimator we derive a new estimator by employing a machine
learning technique called leveraging. Leveraging is an ensemble technique very similar to
boosting® which according to Meir and Rétsch (2003) “combine[s] simple 'rules’ to form
an ensemble such that the performance of the single ensemble member is improved”. For
this purpose we define our leveraging estimator in an iterative manner such that in each
iteration step we give more weight to those observations for which the latest conditional
quantile estimates produce a higher estimation error and less weight to those observations
associated with a lower estimation error. Errors are calculated based on the check-function,
see Equation (3). More details on the construction of the estimator along with an extensive
simulation study will be made available in a separate paper.

We use the leveraging estimator for our main analysis but also include results for the
quantization and copula estimator in the robustness checks in Section 4.3.”7 Results from the
leveraging estimator are based on our own implementation while for the quantization and
the copula estimator we rely on the QuantifQuantile and vinereg (with nonparametric pair

copulas) R-package, respectively.

6As the concepts of boosting and leveraging are very similar both terms are often used interchangeably
in the literature. However, we follow Duffy and Helmbold (2002) and restrict usage of the term boosting to
algorithms proved to fulfill a so-called Probably Approzimately Correct (PAC) learning - property and use
the term leveraging for all other related ensemble learning techniques.

7 Although there is a variety of conditional quantile estimators, the number of methods that can account
for two or more covariates is substantially lower. In addition, Figure 6 indicates that conditional quantile
curves in the option sample of our empirical study are best tackled by nonparametric methods. We also
considered the kernel estimator due to Li and Racine (2008) as well as the kNN estimator but excluded them
from the empirical study because of unsatisfactory results in pretests. All computations were performed on
the Big-Data-Cluster Galaxy provided by the University Computing Center at Leipzig University.
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3 Empirical study

In Section 2.2 we discussed some of the advantages of conditional quantile based portfolio
sorts over simple (conditional) portfolio sorts. In this empirical study we build on this
approach to study the VRP in the cross-section of options while controlling for the level of
realized volatility. We compare our results to those obtained by sorting on the log-difference
of RV and IV. In the construction of our data sample as well as in the corresponding trading

strategies we closely follow Goyal and Saretto (2009).

3.1 Sample construction

The sample period is from January 1996 to June 2019. Data on US equities (including
prices, closing bid and ask quotes, and returns) are retrieved from the Center for Research
in Security Prices (CRSP). Option data are obtained from the OptionMetrics IvyDB US
database. The data include information on the entire US equity option market (Ameri-
can options) covering in particular closing bid and ask quotes along with option implied
volatilities (IV) and greeks (delta, gamma, vega)®.

For our main empirical analysis we focus on the cross-section of equity options that are
at the money (ATM) and one month away from expiration since they are the most frequently
traded ones (cf. Goyal and Saretto, 2009). In further analyses we also include in the money
and out of the money options. Every month, we form portfolios based on information from
the first trading day after monthly option expiration®.

To minimize the impact of recording errors we apply several standard filters to the data.
Following Goyal and Saretto (2009) we exclude all observations with an ask price lower than

the bid price, a bid price equal to zero, or a bid-ask spread below the minimum tick size'C.

8Implied volatility estimates as well as option greeks are derived from a binomial tree model based on
Cox et al. (1979). For further details we refer to the OptionMetrics IvyDB US reference manual.

9The expiration day for standard exchange-traded options is the third Friday of the expiration month or
the following Saturday.

0Before 2007, the minimum tick size is equal to $0.05 ($0.10) for options trading below (above) $3.
On January 26, 2007, the SEC introduced the industry wide Penny Pilot Program reducing the minimum
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We further remove prices that violate arbitrage bounds. Following Hu and Jacobs (2020) we
exclude all call options where the ask price exceeds the price of the underlying (S) or where
the ask price is below S — K with K denoting the exercise price of the option. Additionally,
we exclude all put options with a bid price above the exercise price or a bid price below
K — S. Furthermore, to avoid errors due to stock splits and re-capitalizations, we remove
all options for which the adjustment factor for the exercise price does not coincide with the
adjustment factor for the share price. In order to eliminate options with no liquidity, we
exclude options with zero open interest (cf. Driessen et al., 2009). All equity options in our
sample are American. We therefore follow Hu and Jacobs (2020) and remove all options with
an ex-dividend date during the remaining life of the option contract to reduce the impact

! Finally, following Cont and da Fonseca (2002) we exclude all options

of early exercise.!
with moneyness values (defined as the ratio K/S) outside of the interval [0.5,1.5] to limit
numerical uncertainty in computing implied volatilities.

This constitutes our option sample for arbitrary moneyness consisting of 2,280,558 calls
and 1,758,895 puts on 9,069 and 8,802 different stocks, respectively over 282 timepoints
between January 1996 and June 2019. The number of option contracts varies substantially
over time. For example, the number of calls ranges between 1,206 (May 1996) and 16,054
(December 2017) with the number of contracts increasing over time.

In our baseline analysis we focus on ATM options. Therefore, for every month and
each underlying we select the call and put contracts that are closest to ATM but according
to Goyal and Saretto (2009) only consider options with moneyness values in the interval

[0.975,1.025]. This constitutes our ATM option sample consisting of in total 267,147 calls

and 244,892 puts. There is also substantial variation in the number of option contracts over

tick size for certain equities to $0.01 ($ 0.05). This program, today know as Penny Interval Program, has
subsequently been extended to cover more equities. For simplicity, we therefore consider a minimum tick size
of $0.05 ($0.10) before January 26, 2007, and $0.01 ($0.05) for all options below (above) $3 after January
26, 2007, respectively.

HWe acknowledge that this controls for early exercise of calls while American puts might still exhibit
a premium (Goyal and Saretto, 2009; Barraclough and Whaley, 2012). However, there are several studies
arguing that the empirical implications of adjustments for early exercise are small, see, e.g., Boyer and
Vorkink (2014).
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time. For example, the number of calls in the ATM sample varies between 171 (June 1996)
and 1683 (January 2018).

We complement our data sample with stock related characteristics. Following Goyal and
Saretto (2009), for each month and each stock we calculate the realized volatility (RV) as
the standard deviation of the realized daily stock returns over the preceding 12 months.'?
Additionally, we include the third (skewness) and forth (kurtosis) moment of the underlyings’

return distribution (over the most recent 12 months).

3.2 Summary statistics

We provide summary statistics for implied (IV) and realized volatility (RV) of ATM calls
and puts and as well as calls and puts of arbitrary moneyness in Table I. The volatilities are
annualized. We also include summary statistics for option greeks (delta, gamma, vega) as
well as skewness and kurtosis of the underlyings’ return distribution. The means are obtained
by first taking time-series averages of IV and RV for each stock and then computing the cross-
sectional averages of these average volatilities. For the other statistics (median, minimum,
maximum, standard deviation, skewness, and kurtosis) we proceed analogously so that the

provided statistics can be interpreted as summary statistics of an average stock.
— Insert Table I about here. —

For ATM calls and puts, IV and RV are on average very close to each other. For calls
the average IV is 48.6 % compared to an average RV of 49.7 % while for puts the average
IV is 50.3 % and the average RV is 50.0 %. The distribution of IV is, however, more volatile
than the distribution of RV. Additionally, IV is on average more positively skewed and more

leptokurtic than RV. The other variables are except for options’ delta (0.536 for calls and

12Volatility is highly mean-reverting. Therefore, large deviations between current realized volatility (e.g.,
calculated over the current month) and the long-term average (calculated over a 12 month period) are
unlikely to persist. Therefore, we consider the 12 month RV to be a realistic estimate of volatility over the
remaining life of the respective options, see also Goyal and Saretto (2009) and the discussion therein. Apart
from this, building on the RV over the preceding 12 months allows us to compare the results from our study
to those obtained by Goyal and Saretto (2009).
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-0.465 for puts) on average very similar to each other. For example, average values for call
options are 0.212 (gamma), 3.476 (vega), 0.303 (skewness), and 10.669 (kurtosis).

The differences between ATM options and options of arbitrary moneyness are quite sub-
stantial, especially for TV. First of all, the average level of IV is much higher (59.9 % vs.
48.6 % for calls and 59.7 % vs. 50.0 % for puts). In addition, IV is on average more volatile,
more positively skewed, and more leptokurtic than in the case of ATM options. This is due
to the fact that implied volatilities are in general not constant for different moneynesses
(for a given underlying at a given date) but rather exhibit the pattern of a volatility skew,
smile, or smirk, see, e.g., Toft and Prucyk (1997). This variation of IV across moneyness
highlights the necessity to control for moneyness when building portfolios for options of ar-
bitrary moneyness. On average, the calls and puts in our sample of arbitrary moneyness also
exhibit a slightly higher RV then ATM calls and puts. This is explained by the fact that at
a given date on average about half of the underlyings do not enter into the ATM sample be-
cause there is no corresponding option contract with moneyness in the interval [0.975, 1.025].
These are stocks with a higher RV. Due to the inclusion of out of the money as well as in the
money options into the sample of arbitrary moneyness, there are also substantial differences
in option greeks. For example, call options of arbitrary moneyness have an average delta of

0.585 (0.536 ATM), gamma of 0.139 (0.212 ATM), and vega of 2.301 (3.476 ATM).

3.3 Portfolio formation

Our portfolio formation is closely related to Goyal and Saretto (2009) who show that
ATM delta-hedged call returns and straddle returns increase as a function of the volatility

risk premium (VRP), the log-difference of RV and IV (see Hu and Jacobs, 2020).!* Goyal and

13Goyal and Saretto (2009) argue that volatility is highly mean-reverting and therefore large deviations
of the current volatility from the long-term average are unlikely to persist. As IV incorporates expectations
on future volatility this implies that large deviations between RV (as long-term average) and IV (as forecast
on future volatility) are likely to reduce in magnitude. The authors conclude that options with an IV much
lower than the corresponding RV are cheap while options with a much higher IV than RV are expensive. This
raises the question how large deviations between RV and IV should be quantified. Note that the authors
do not take a clear stand on the question if their observed returns are abnormal or arise as compensation
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Saretto (2009) determine large deviations between RV and IV based on their log-difference.
The underlying assumption is that by applying the transformation ¢ : R*> — R : (RV,IV)
log (%) deviations between RV and IV of all (ATM) options at a particular date can properly
be compared to each other. The trading strategy is then simply derived by investing long
(short) in the options within the lowest (highest) decile of the log-differences, i.e., low and
large deviations are identified based on a one-dimensional portfolio sort. This strategy is
subsequently shown to earn a statistically and economically significant average monthly
return.

Identifying options with large deviations between RV and IV is equivalent to determin-
ing options where IV is particularly high or low given a particular level of RV. The log-
transformation can then be seen as an intriguingly simple approach that essentially trans-
lates the two-dimensional problem of identifying value pairs (RV, IV) of options where IV
is abnormally high or low given their RV to a one-dimensional problem that can be tackled
by simple portfolio sorts. However, Goyal and Saretto (2009) report that RV increases when
proceeding from decile one to decile ten, see also Table II. As a consequence, the proposed
strategy is not only long (short) in large (low) deviations between RV and IV but also long
(short) in high (low) realized volatility.

This is due to the implicit assumption of a linear relationship between RV and IV. As an
illustrative example we visualize the value pairs (RV, IV) of all ATM call options in January
2010 along with the conditional quantile curves implied by the log-difference of RV and IV
in Figure 4."* The red dashes (mostly on the left) and black dashes (mostly on the right)
on the x-axis illustrate that there are systematic differences in RV between the long and the

short portfolio.

for some aggregate risk. On the one hand the authors argue that high deviations between RV and IV are
indicative of option mispricing. On the other hand they highlight that deviations between RV and IV will
be more (less) pronounced for equities with higher (lower) volatility of volatility.

4The long portfolio consists of those options fulfilling the inequality log RV; — log IV; > qgo9, where ggoo
is defined as the unconditional empirical 90 % quantile of the log-differences. Analogously, options in the
short portfolio fulfill log RV; — log I'V; < q19%. This is equivalent to requiring I'V; < RV, - e~ 999% in the long
portfolio and IV; > RV; - e”%10% in the short portfolio, i.e., the conditional quantile curves are implicitly
assumed to be linear functions in RV.
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— Insert Figure 4 about here. —

As a further illustration we provide the conditional quantile curves implied by measuring
the VRP as the simple difference RV — IV according to Cao and Han (2013). The main
difference is that large deviations between RV and IV are no longer determined based on the
relative deviation If—“// in case of the log-differences, but rather by their absolute deviation
RV — IV. Consequently, the derived quantile curves are linear and parallel to each other.

Again, this causes systematic differences in RV between the long and the short portfolio, see

Figure 5 for an illustration.

— Insert Figure 5 about here. —

These differences in realized volatility are problematic against the background of recent
literature. For example, Cao and Han (2013) show that delta-hedged equity option returns
decrease when the underlying stock’s idiosyncratic volatility increases. Furthermore, Hu and
Jacobs (2020) find that (total) realized volatility drives raw option returns. In the light of
these findings it is unclear to which extent the positive returns of the long-short strategy
(high minus low VRP) are attributable to differences in the VRP or differences in the average
level of RV. This complicates an interpretation of the obtained returns.

This is an ideal field of application of conditional quantile curves allowing us to derive
long (short) portfolios with high (low) differences between RV and IV while controlling for
RV. This is done by forming long (short) portfolios consisting of options with low (high) IV
conditional on their underlying’s RV.'> Furthermore, our nonparametric procedure enables
us to model the relation between RV and IV without making any assumptions about the
functional form, see Figure 6 where we provide the conditional quantile curves of IV given RV

for ATM call options in January 2010.1% The Figure illustrates that the conditional quantile

15 As long and short portfolios are formed on a fixed date based on the cross-section of ATM options with
maturity of one month, we automatically control for moneyness, maturity, and the risk-free interest rate,
too. In further analyses on our option sample of arbitrary moneyness we additionally control for option
moneyness.

16Qur approach can easily be extended to control for more covariates. In Section 3.4 we also report results
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curves are in fact non-linear. Furthermore, especially for option with high RV, the gradients

of the conditional quantile curves are lower than the ones implied by the log-difference.
— Insert Figure 6 about here. —

Analogously to the trading strategy by Goyal and Saretto (2009) our short portfolio is
constituted of options with high IVs relative to the RVs of their underlyings. However, the
criterion of choosing options in the lowest decile of log RV - log IV is replaced by selecting
options with IV above the conditional 90 % quantile given the RV of the corresponding
underlying. More exactly, for option ¢ with realized volatility RV; and implied volatility
IV; being in the short portfolio, we require F(IV;|RV;) é 90 % where F(-|RV;) denotes the
conditional cumulative distribution function of IV given a specific level of realized volatility
(RV;). More intuitively, our short portfolio is constituted of the options where the value-pair
(RV, 1V) is above the 90 % conditional quantile curve in Figure 6. Analogously, the long
portfolio is constituted of the options below the 10 % conditional quantile curve.

Figure 6 illustrates that there is no systematic difference in the average RV between
the short and long portfolio as visualized by the red and black dashes on the x-axis. In
comparison with Figure 4 it can further be seen that there are noteworthy disagreements
in which options enter into the short and long portfolios, especially for options with a large
RV.

While these figures reflect the relation between RV and IV on a particular date only, Table
IT presents evidence that by employing conditional quantile curves systematic differences in
RV between the decile portfolios can be reduced significantly. The table compares average
values of IV and RV in the 10 decile portfolios obtained by sorting ATM options on the
log-difference between RV and IV to our approach of sorting options according to their IV

conditional on their RV.!" The comparison is done for calls and puts separately. We further

for our option sample of arbitrary moneyness. To avoid confounding effects due to high or low moneyness
(“volatility skew”) we additionally condition on option moneyness. In Section 4.1 we provide results when
conditioning on further moments of the underlyings’ return distribution.

"Decile portfolios based on our conditional quantile approach are obtained by including options with
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include option greeks (delta, gamma, vega) as well as further moments of the underlyings’

return distribution (skewness, kurtosis) in the table.'8
— Insert Table II about here. —

Results for call and put options are very similar. For brevity, we therefore focus on the
analysis of call results. Like Goyal and Saretto (2009) we find that when sorting on log RV
- log IV, IV decreases when proceeding from decile 1 to decile 10 by 2.0 percentage points
while RV increases by 4.4 percentage points. Thus, the differences in RV between decile
1 and 10 are more than double as high than those in IV. Furthermore, while the decile
portfolios are (almost) monotonic in RV, there is no clear pattern for IV. It is therefore
unclear to which extent a corresponding long-short strategy (decile 10 - decile 1) is driven
by systematic differences in RV rather than differences in the VRP.

In our approach, we control for RV when forming the decile portfolios by sorting option
contracts on their IV conditional on their RV. This leads to average differences in IV of
nearly 6 percentage points that are by construction ensured to decrease monotonically from
decile 1 to decile 10. More importantly, differences in RV between decile 1 and 10 are very
small (about 0.4 percentage points). Consequently, the influence of different levels of RV on
the returns from a long-short strategy is significantly reduced.!® For both strategies there
is not much variation in option greeks (delta, gamma, vega) across portfolios. However, for
both strategies the returns of the underlyings in portfolio 10 are more positively skewed and
more leptokurtic than those in portfolio 1 with the differences being more pronounced in the

portfolios formed on the log-differences. For example, the average skewness in portfolio 10 is

F(IV|RV) > 90 % in the first portfolio, options with 80 % < F(IV|RV) < 90 % in the second portfolio, etc.
The portfolios are equal-weighted. Note, that we sort on the conditional IV in descending order to obtain
decile portfolios where the differences between RV and IV are increasing.

18Means are first calculated (equally weighted) for each month and each portfolio and are then averaged
over time.

YFor puts, the average difference in RV between decile 1 and 10 is a little bit higher (1.8 percentage
points). This might be due to the smaller size of our put option sample. However, this difference is relatively
small compared to the average difference in IV (7.6 percentage points). When turning to the option sample
of arbitrary moneyness (not covered in Table II), the average differences in RV between decile 1 and 10 are
1.1 percentage points for calls and 0.1 percentage points for puts.
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0.218 compared to 0.171 in portfolio 1 for the approach based on conditional quantile curves
(0.242 vs. 0.160 for portfolios 10 and 1 formed on the log-differences).?® To account for the
fact that results from our long-short strategy might be biased by systematic differences in
skewness and kurtosis we control for these characteristics in a robustness check in Section

4.1.

3.4 Trading strategy
At the money option contracts

We start with a trading strategy based on ATM options only so that we are able to
compare the results of a trading strategy based on conditional quantile curves to those
obtained by sorting according to the criterion by Goyal and Saretto (2009). First of all, in
each of the 10 decile portfolios we calculate monthly returns from a raw option strategy.?!
While the portfolios themselves are formed every month on the first trading day (typically a
Monday) after the option expiration, we follow Goyal and Saretto (2009) and start trading
the day after (typically a Tuesday) to mitigate microstructure biases. We use the mid-point
of bid and ask quotes to proxy for the market price of the option at the beginning of the
monthly trade (cf., e.g., Coval and Shumway, 2001; Driessen et al., 2009; Goyal and Saretto,
2009; Cao and Han, 2013; Hu and Jacobs, 2020). We hold all options until expiration.?? For
an option expiring in the money, the return is given by the terminal payoff divided by the
price of the option contract minus 1. For an option that expires out of the money we set the
return to —100 %.

In addition to raw option returns we also calculate returns from a delta-hedged strategy

20Eisdorfer et al. (2020) provide evidence that the nominal stock price level matters for option returns.
However, for both approaches (log-differences, conditional quantiles) we do not find much variation in the
average log stock price across the decile portfolios which is why we do not include the log stock price in
further analyses.

21Goyal and Saretto (2009) do not implement a raw option strategy but rather provide results for a delta-
hedged option strategy as well as for a strategy based on straddles (built of pairs of calls and puts with the
same exercise price).

22The issue of early exercise is discussed in Section 3.1.
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23 Returns for these trading

to reduce the directional exposure to the underlying stocks.
strategies are calculated for calls and puts separately and based on equal-weighted portfolios.

Results for both approaches (log-differences and conditional quantiles) are reported in
Table III (delta-hedged returns) and Table IV (raw option returns). The tables provide
summary statistics on the monthly returns in each of the decile portfolios (long positions)
as well as for a long-short strategy (high minus low VRP). The tables illustrate that returns
in the portfolios sorted on the VRP increase (almost) monotonically for both puts and calls
in the delta-hedged and in the raw option strategy, respectively. This is true for portfolios

formed based on conditional quantile curves and portfolios formed according to the log-

difference of RV and IV.
— Insert Table III about here. —

A long-short delta-hedged strategy based on conditional quantile curves yields average
monthly returns of 2.0 % for calls and 1.7 % for puts with a monthly Sharpe ratio of 0.842
(2.917 annualized) and 0.796 (2.757 annualized), respectively. In comparison, the delta-
hedged strategy based on the log-difference of RV and IV earns monthly Sharpe ratios of
0.786 (calls) and 0.612 (puts). That is, we confirm the existence of a volatility risk premium
in the cross-section of option returns and find an even higher effect for delta-hedged returns

when controlling for the level of realized volatility.
— Insert Table IV about here. —

Higher absolute returns can be earned with raw option strategies. A long-short strategy
based on conditional quantile curves yields average monthly returns of 21.3 % (calls) and
9.9 % (puts) with Sharpe ratios of 0.523 and 0.212, respectively. All trading strategies based

on conditional quantiles yield returns that are both economically and statistically significant

ZDelta-hedged option positions are formed by buying one option contract and buying (for puts) or short-
selling (for calls) delta shares of the underlying stock. We follow the conservative approach of Goyal and
Saretto (2009) and do not rebalance the portfolio during the holding period, see the discussion ibidem.
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with t-statistics of at least 3.5. While for calls the Sharpe ratio for a strategy based on
conditional quantile curves is higher than for a strategy based on the log-differences of RV
and IV (0.523 vs. 0.434), the opposite is true for puts (0.212 vs. 0.298).24 Except for delta-
hedged call returns, the differences in the Sharpe ratios are statistically significant at the
5 % level when testing according to Ledoit and Wolf (2008). We attribute these differences
between delta-hedged returns and raw option returns as well as between calls and puts to
the systematic differences in RV when sorting options on the log-difference of RV and IV.
While we control for the level of RV across the decile portfolios by using conditional quantile
estimates, the long-short strategy based on the log-differences is long (short) in high (low) RV
(see Table II). This differing influence of RV on the returns from various strategies highlights
the importance of controlling for the influence of the level of RV when empirically analyzing

the VRP.

Options of arbitrary moneyness

So far, we have analyzed our sample of ATM calls and puts. As ATM calls (puts)
account for only 11.7 % (13.9 %) of all calls (puts) in our sample, we extend our analysis
to options with moneyness (defined as the ratio K/S) between 0.5 and 1.5. In doing so, we
can analyze if there is still a volatility risk premium in the cross-section of option returns
when additionally including in the money and out of the money options. Furthermore, this
allows us to increase the number of observations by a factor of about 8. Finally, by requiring
ATM options to have a moneyness in the interval [0.975, 1.025] (see Section 3.1) we also
exclude many underlyings from our analysis. This happens when there are no options with
appropriate moneyness available at a specific date. Not restricting moneyness to the small
interval [0.975, 1.025] therefore doubles the number of underlyings available in our sample
on average over all months. In particular, the minimum number of different underlyings at

a given day increases from 171 to 734 (for calls) and 105 to 387 (for puts). This facilitates

24These differences are robust to the choice of the method for estimating conditional quantiles, see Section
4.3.
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controlling for further moments of the underlyings’ return distribution, see Section 4.1.
Our approach of using conditional quantiles for deriving decile portfolios generalizes nat-
urally to options of arbitrary moneyness. Therefore, we form portfolios based on extreme
values of IV conditional on RV and options’ moneyness.?> We condition on options’ money-
ness to avoid results from such a trading strategy to be biased by systematic differences in
options’ moneyness (volatility skew, see, e.g., Toft and Prucyk (1997)). Summary statistics
for monthly delta-hedged and raw option returns for both calls and puts are reported in
Table V. The results are in line with our previous findings and confirm that the VRP is also
priced in the cross-section of returns of options with arbitrary moneyness. For example, a
delta-hedged strategy that is long (short) in options with a high (low) VRP yields an average
monthly return of 2.4 % for calls and 2.5 % for puts with a monthly Sharpe ratio of 0.816
(calls) and 0.844 (puts), respectively. The corresponding long-short raw option strategy ex-
hibits an average monthly return of 20.1 % for calls and 13.1 % for puts with a monthly
Sharpe ratio of 0.390 and 0.217, respectively. All trading strategies yield returns that are

both economically and statistically significant with t-statistics above 3.6.

— Insert Table V about here. —

4 Robustness checks

4.1 Controlling for further moments of the underlyings’ return

distribution

In our baseline analysis we sort options into decile portfolios based on their IV conditional

on their RV. This allows us to identify large deviations between IV and RV to study the

25To put this into perspective: If one were to replicate this based on portfolio sorts, one would be required
to apply a conditional triple-sort to the data. This is something that is impracticable if not infeasible against
the background of only 826 put options at the beginning of our data sample. In Section 4.1 we additionally
control for skewness and kurtosis in the underlyings’ return distributions. This would be, at the latest,
impossible to achieve with portfolio sorts.

23



VRP without potential biases arising from different levels in RV. However, Table II indicates
that after controlling for RV (the second moment of the underlyings’ return distribution) via
conditional quantiles there remain differences in the third (skewness) and fourth (kurtosis)
moment of the underlyings’ return distribution between the long (decile portfolio 10) and
the short portfolio (decile portfolio 1). These differences might potentially bias returns from
a strategy exploiting the VRP.

Fortunately, our approach of using conditional quantiles allows us to additionally condi-
tion on the underlyings’ skewness and kurtosis. This is impossible via conditional portfolio
sorts as this would require a quadruple sort on IV, RV, skewness, and kurtosis in our ATM
option sample.?® Additionally controlling for moneyness in our sample of arbitrary money-
ness would even require a quintuple sort.

Summary statistics for the monthly returns from the delta-hedged and raw option strate-
gies for puts and calls are reported in Table VI for the ATM option sample as well as the
sample of arbitrary moneyness. Skewness and kurtosis are calculated based on the realized
returns from the option contracts’ underlying over the most recent 12 months. The results

are in line with our previous findings.

— Insert Table VI about here. —

4.2 Transaction costs

Transaction costs in option markets can be quite large and might in part explain some
pricing anomalies such as put-call parity violations, see Goyal and Saretto (2009) and the
references therein. For example, in our ATM option sample the average bid-ask spread

relative to the mid-prices is 23.7 % for calls and 22.7 % for puts. We therefore study

26This becomes even more apparent when considering the number of only 105 puts at the beginning of
our sample period in January 1996. This makes a conditional portfolio sort in 10 bins for each variable
(10,000 bins in total) infeasible. Instead performing a portfolio sort based on only 5 bins for each variable
would still be infeasible (625 bins). Apart from this, it would be a very imprecise approximation of the true
conditional quantile curves (see the illustrative example in Figure 2). These and further issues are discussed
in Section 2.2.
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limitations of investors in exploiting profits from the long-short strategies based on the
VRP.

So far, we assumed investors to trade options at their mid-point price. However, to
account for transaction costs we recalculate returns from our strategies when incorporating
bid-ask spreads. This not only concerns the option contracts but also the underlying stocks.
For the raw option strategy transaction costs in the underlying stocks only occur at expiration
as all equity options have to be delivered physically. In our delta-hedged strategy, stock
related transaction costs additionally arise at the beginning of each monthly trading period.

As already mentioned, (quoted) bid-ask spreads can be quite high. However, although
effective bid-asks spreads are usually still quite high in absolute terms, there is empirical
evidence that they are small relative to the quoted spreads with ratios below 0.5 (see, e.g.,
Mayhew, 2002; de Fontnouvelle et al., 2003). We therefore recalculate returns for our raw
and delta-hedged option strategies based on an effective spread of 50% relative to the quoted
spreads. For example, for an option contract with quoted bid and ask equal to $2 and $3,
respectively, we assume investors to buy at $2.75 and sell at $2.25, that is, at an effective
spread of $0.5 instead of the quoted spread of $1. However, Battalio et al. (2004) find higher
ratios between effective and quoted spreads when studying a small sample of large stocks
between June 2000 and January 2002. We therefore follow Goyal and Saretto (2009) and
additionally consider ratios of 75 % and 100 % between effective and quoted spreads.

Average returns for raw and delta-hedged long-short strategies for puts and calls, respec-
tively, are reported in Table VII along with their t-statistics. As expected, average monthly
returns decrease substantially when accounting for transaction costs. For example, the av-
erage monthly return from the ATM delta-hedged call strategy decreases from 2.0 % when
trading at the mid-point prices to 0.3 % when considering an effective spread of 50 %. How-
ever, average delta-hedged returns remain positive for calls and puts both ATM as well as
for arbitrary moneyness with t-statistics between 1.078 and 3.286. Nevertheless, while raw

option returns are still positive after considering transaction costs (50 % ratio of effective
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to quoted spreads) for calls (both ATM and for arbitrary moneyness), raw option returns
for puts are negative (both ATM and for arbitrary moneyness). When further increasing
transaction costs to 75 % or even 100 % of effective to quoted spreads, returns deteriorate
further and are negative for all reported strategies. This illustrates, that returns from our
option strategies are strongly affected by transaction costs, especially in the case of raw

option strategies.

— Insert Table VII about here. —

4.3 Other estimators of conditional quantiles

There are various methods for estimating conditional quantiles, see Section 2.3 for details
on the estimation of conditional quantiles in general and specific estimators in particular.
So far, we used the leveraging estimator to form decile portfolios and subsequently calculate
returns from a long-short strategy. To make sure that our results are not driven by the specific
choice of the estimator we repeat our analyses based on the quantization estimator due to
Charlier et al. (2015b) and the copula estimator due to Kraus and Czado (2017). Results on
the returns from long-short strategies based on the three different estimators are reported in
Table VIII. For illustrative purposes, we also provide results obtained from a (conditional)
double-sort (for ATM options) and triple-sort (for options of arbitrary moneyness) into 10

bins for each variable.?”
— Insert Table VIII about here. —

The results are in line with our previous findings. In particular, all conclusions with

regard to the comparison between our approach of calculating the VRP while controlling for

27 As outlined in Section 2.2 portfolio sorts are inflexible with regard to the percentage of observations that
are supposed to enter into the long and short portfolios, especially when the number of observations is low or
when sorting on multiple variables. For example, in our put sample of arbitrary moneyness the percentage of
observations entering into the long and short portfolios varies between 10.32 % and 18.62 % over all trading
periods with a mean of 11.08 %. However, while conditional portfolio sorts might still be feasible in this case
(with limitations), controlling for further characteristics as in Section 4.1 would be impossible.
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RV and the approach based on the log-difference of RV and IV remain valid, see Section 3.4
for details. However, the variation between the different estimators is higher for the trading
strategies involving options of arbitrary moneyness, which is mainly due to the quantization

estimator.?®

4.4 Including dividend-paying stocks

All equity options in our sample are American. In our baseline analysis we therefore
follow Hu and Jacobs (2020) and exclude all options with an ex-dividend date during the
remaining life of the contract. This is done to reduce the impact of early exercise, see
Section 3.1. However, to show robustness of our results, we recalculate the returns of our
option strategies when not excluding dividend-paying stocks. This increases our ATM option
sample to 326,224 calls and 299,924 puts while the sample of arbitrary moneyness expands
to 2,682,492 calls and 2,145,435 puts. Summary statistics on the monthly returns of delta-
hedged and raw option strategies for calls and puts both ATM and for arbitrary moneyness

are reported in Table IX. The results are in line with our previous findings.

— Insert Table IX about here. —

5 Conclusion

In this paper, we find new evidence that delta-hedged equity option returns include a
volatility risk premium. We sort options on their implied volatility conditional on their
realized volatility to proxy for the volatility risk premium. A strategy that is long (short) in
high (low) deviations between realized and implied volatilities yields returns that are both
economically and statistically significant. This result holds for call and put delta-hedged and

raw option returns for both at the money (ATM) options and options of arbitrary moneyness.

28Tn an unreported simulation study we find the leveraging and the copula estimator to be most appro-
priate. However, we include the quantization estimator to provide a more comprehensive picture.
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Changing the type of estimator of conditional quantiles as well as controlling for additional
characteristics of the underlying does not affect our main finding.

The key to our main finding, and the difference to previous work, is our use of conditional
quantiles in contrast to standard portfolio sorts or regression techniques. Using conditional
quantiles estimated via nonparametric machine learning algorithms allows us to capture the
non-linear relation between implied and realized volatility while at the same time controlling
for characteristics that are known to affect stock volatility as well as the cross-section of
expected option returns. As our main result, we find that previous work on the existence
of a risk premium for volatility and volatility mispricing were correct, but considerably
underestimated the size of the effect. Exploiting the estimated quantiles of implied volatility
conditional on realized volatility and moneyness leads to returns that are higher than those
reported in previous work on similar volatility strategies.

Our proposed use of conditional quantiles should be seen as a good compromise between
standard portfolio sorts and nonparametric cross-sectional regressions. While the former
easily fail to control for more than two covariates, the latter do not come with an easy
interpretability in empirical asset pricing where one is interested in ready-to-use trading
strategies involving a reasonably small number of assets. While our empirical study is con-
cerned with the cross-section of option returns, our method is sufficiently general and can

easily be applied to other assets, most importantly stocks.
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Table I: Summary statistics for the option samples

This table presents summary statistics for implied (IV) and realized volatilites (RV) of ATM calls
and puts as well as option contracts of arbitrary moneyness. All options are American and have a
maturity of about one month. Our ATM sample consists of 267,147 calls and 244,892 puts while
the sample of arbitrary moneyness is composed of 2,280,558 calls and 1,758,895 puts. The sample
period is January 1996 to June 2019. IVs and option greeks (delta, gamma, vega) are retrieved
from the OptionMetrics IvyDB US database and calculated based on a binomial tree model due
to Cox et al. (1979). The volatilities are annualized. Option underlyings’ returns are retrieved
from CRSP. Skewness (skew) and kurtosis (kurt) are computed from realized returns over the most
recent 12 months. The means are obtained by first taking the time-series average of IV and RV
for each stock and then computing the cross-sectional average of these average volatilities. For
the other statistics (median, mininum (min), maximum (max), standard deviation (sd), skewness
(skew), and kurtosis (kurt)) we proceed analogously. Note that in the option samples of arbitrary
moneyness, multiple IV values per stock and month can enter into the summary statistics.

The differences in RV between the ATM sample and the sample of arbitrary moneyness are due to
the exclusion of option contracts and their corresponding underlyings with moneyness outside of
the interval [0.975, 1.025] for ATM options. For more details on the construction of our sample we
refer to Section 3.1.

mean median min max sd skew kurt

v 0.486 0.465 0.317 0.808 0.143 0.791 3.943

RV 0.497 0.477 0.365 0.750 0.123 0.684  3.386

£ delta 0.536 0.537 0.438 0.629 0.058 -0.094  2.360

8 gamma 0.212 0.198 0.117 0.397 0.087 0.687  3.506

vega 3.476 3.286 1.654 6.467 1.383 0.363  2.703

skew 0.303 0.290 -1.223 1.909 0.931 0.028 3.513

kurt 10.669 8.738 5.237  27.044 6.978 1.143  4.830
S
>

v 0.503 0.480 0.341 0.823 0.144 0.807 3.926

RV 0.500 0.479 0.369 0.748 0.124 0.680  3.352

2 delta -0.465 -0.463 -0.557 -0.381 0.055 -0.137 2.274

é gamma 0.201 0.188 0.114 0.365 0.080 0.648  3.356

vega 3.513 3.322 1.705 6.473 1.405 0.359  2.678

skew 0.280 0.274 -1.213 1.836 0.936 0.021 3.401

kurt 10.695 8.880 5.286 26.337 6.950 1.116 4.684

v 0.599 0.551 0.281 1.455 0.224 1.356  6.274

RV 0.524 0.498 0.357 0.825 0.133 0.629  3.217

£ delta 0.585 0.606 0.128 0.968 0.272  -0.148 1.763

® 8 gamma 0.139 0.126 0.023 0.442 0.089 0.990 5.514

) vega 2.301 2.090 0.274 6.347 1.354 0.519 3.214

i skew 0.293 0.278 -1.582 2.406 0.977 0.119 4.261

g kurt 10.953 8.664 4.694  33.465 7.535 1.400  6.300
o
£
>

= v 0.597 0.563 0.330 1.210 0.188 1.001  4.752

,’5 RV 0.531 0.506 0.365 0.823 0.134 0.603  3.161
2
-

< 2 delta -0.405 -0.382 -0.808 -0.092 0.221 -0.222 1.921

i gamma 0.153 0.139 0.051 0.403 0.078 0.950 5.106

vega 2.576 2.352 0.739 6.375 1.297 0.568  3.167

skew 0.282 0.272 -1.529 2.233 0.958 0.066  4.030

kurt 10.933 8.734 4.816  31.563 7.307 1.320 5.864
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Table II: Decile portfolios for ATM options

This table provides information on the average values of various covariates within decile portfolios
that are formed according to two approaches: This paper proposes sorting options (in descending
order) on their IV conditional on their underlyings’ RV into decile portfolios to proxy for the
VRP. This yields portfolios where on average the differences RV-1V increase monotonically while
RV remains nearly constant. We compare this to portfolios obtained by sorting options on the
log-difference of RV and IV (according to Goyal and Saretto, 2009). This yields portfolios that are
monotonically increasing in the average RV. This is due to an implicit linear assumption on the
conditional quantile curves, see Figure 4 for an illustration. In opposition, we calculate conditional
quantiles nonparametrically to mitigate this issue, see Figure 6.

Within the decile portfolios we provide means of IV, RV, option greeks (delta, gamma, vega) as
well as skewness (skew), and kurtosis (kurt) of option underlyings’ return distribution. The means
are calculated by first computing averages for each portfolio and each month and then taking the
time-series averages. Results are based on our ATM call and put sample January 1996 to June
2019, see Section 3.1 for details on the sample construction.

Decile portfolios

1 2 3 4 5 6 7 8 9 10
v 0.438 0.423 0.417 0.413 0.410 0.410 0.411 0.413 0.414 0.418
o RV 0.423 0.421 0.421 0.421 0.421 0.428 0.431 0.439 0.447 0.467
g RV-IV -0.015  -0.002 0.004 0.008 0.011 0.018 0.020 0.026 0.033 0.049
o
EE) delta 0.534 0.534 0.533 0.533 0.531 0.532 0.533 0.531 0.531 0.532
= gamma 0.151 0.150 0.149 0.152 0.150 0.152 0.151 0.153 0.155 0.164
& vega 4.857 4.941 5.037 4.983 4.986 4.921 4.956 4.952 4.861 4.753
L skew 0.160 0.169 0.165 0.170 0.172 0.166 0.156 0.175 0.179 0.242
kurt 8.758 8.619 8.548 8.652 8.647 8.674 8.740 8.990 9.136  10.679
12}
8
v 0.451 0.437 0.425 0.421 0.413 0.410 0.406 0.401 0.398 0.392
@ RV 0.438 0.438 0.432 0.432 0.428 0.430 0.428 0.427 0.431 0.434
= RVIV -0.013 0.001 0.007 0.011 0.015 0.020 0.022 0.026 0.033 0.042
=1
]
g delta 0.534 0.535 0.534 0.534 0.533 0.533 0.532 0.531 0.531 0.531
. gamma 0.153 0.151 0.150 0.152 0.151 0.151 0.151 0.154 0.154 0.163
'g vega 4.770 4.840 4.957 4.865 4.947 4.981 4.991 4.923 5.094 4.987
g  skew 0.171 0.175 0.171 0.181 0.175 0.161 0.159 0.171 0.177 0.218
kurt 8.870 8.770 8.634 8.829 8.624 8.740 8.732 8.910 9.181  10.280
v 0.457 0.439 0.431 0.426 0.426 0.425 0.426 0.423 0.424 0.430
o RV 0.430 0.427 0.426 0.426 0.430 0.433 0.438 0.440 0.450 0.475
§ RV-1V -0.027  -0.012  -0.005 0.000 0.004 0.008 0.012 0.017 0.026 0.045
o
EE) delta -0.469 -0.470 -0.470 -0.470 -0.473 -0.473 -0.472 -0.472 -0.473 -0.473
= gamma 0.146 0.143 0.145 0.145 0.145 0.145 0.146 0.148 0.148 0.154
& vega 4.818 4.990 5.002 5.036 5.032 5.005 5.001 4.989 5.001 4.866
L skew 0.170 0.161 0.163 0.163 0.183 0.167 0.147 0.161 0.169 0.228
kurt 8.850 8.716 8.577 8.529 8.478 8.683 8.921 8.773 9.283 11.018
2z
&
v 0.475 0.457 0.442 0.438 0.427 0.427 0.420 0.415 0.408 0.399
2 RV 0.449 0.446 0.440 0.439 0.434 0.437 0.434 0.433 0.432 0.431
= RVIV -0.026  -0.011 -0.002 0.001 0.007 0.010 0.014 0.018 0.024 0.032
=1
®
g delta -0.470 -0.469 -0.469 -0.470 -0.471 -0.472 -0.471 -0.472 -0.474 -0.475
. gamma 0.147 0.145 0.145 0.145 0.145 0.146 0.145 0.147 0.148 0.153
'g vega 4.702 4.853 4.901 4.920 4.973 5.014 5.091 5.011 5.112 5.150
g  skew 0.191 0.175 0.177 0.178 0.165 0.170 0.151 0.160 0.153 0.196
kurt 9.026 8.817 8.820 8.617{)9 8.658 8.749 8.635 8.956 9.208 10.412
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Table III: Delta-hedged returns of ATM options

This table provides summary statistics on monthly delta-hedged returns of decile portfolios for
ATM call and put options. Decile portfolios are formed by sorting on the log-difference of RV and
IV according to Goyal and Saretto (2009) and by sorting on options’ IV conditional on their RV,
respectively. We additionally provide returns from a long-short strategy, that is long in decile 10
and short in decile 1. The portfolios are equally weighted. Details on the trading strategy can be
found in Section 3.4.

We report the mean, standard deviation (sd), minimum (min), maximum (max), and Sharpe ratio
(SR) of the monthly returns. Since the long-short strategy is a zero investment strategy, the
Sharpe ratio is simply calculated as the ratio between mean and standard deviation. We calculate
the Sharpe ratios in the decile portfolios accordingly to make a comparison easier. The sample
period is January 1996 to June 2019. Details on the sample construction can be found in Section 3.1.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1
$ mean -0.015 -0.007 -0.006 -0.005 -0.003 -0.003 -0.002 -0.001 0.000 0.005 0.020
g sd 0.027 0.026 0.026 0.028 0.029 0.028 0.029 0.029 0.030 0.032 0.025
S min -0.078 -0.086 -0.073 -0.068 -0.069 -0.056 -0.081 -0.062 -0.069 -0.051 -0.045
% max 0.150 0.171 0.203 0.184 0.187 0.191 0.192 0.186 0.194 0.196 0.161
i) SR -0.571  -0.257 -0.243 -0.188 -0.106 -0.102 -0.068 -0.046 0.015 0.142 0.786
2 ¥
8 -~
'E; mean -0.016 -0.008 -0.006 -0.005 -0.002 -0.003 -0.001 0.000 0.001 0.003 0.020
g sd 0.030 0.029 0.029 0.028 0.031 0.028 0.028 0.027 0.025 0.025 0.023
¢ min -0.088 -0.076 -0.072 -0.070 -0.079 -0.071 -0.061 -0.060 -0.056 -0.038 -0.057
5 max 0.161 0.199 0.183 0.180 0.230 0.185 0.191 0.184 0.179 0.169 0.113
g SR -0.541 -0.273 -0.209 -0.178 -0.073 -0.103 -0.047 -0.018 0.047 0.129 0.842
3]
®  mean -0.012 -0.006 -0.004 -0.003 -0.001 0.000 0.000 0.001 0.002 0.003 0.015
g sd 0.026 0.024 0.025 0.026 0.025 0.027 0.027 0.027 0.028 0.031 0.025
S min -0.078 -0.065 -0.087 -0.078 -0.053 -0.064 -0.075 -0.088 -0.054 -0.057 -0.040
&Eo max 0.132 0.169 0.145 0.177 0.171 0.161 0.203 0.160 0.170 0.202 0.209
) SR -0.477 -0.256 -0.166 -0.112 -0.058 0.002 -0.001 0.026 0.086 0.104 0.612
9] o0
E 2
é mean -0.014 -0.007 -0.003 -0.003 -0.001 0.000 0.001 0.001 0.002 0.003 0.017
g sd 0.028 0.027 0.027 0.026 0.026 0.026 0.026 0.025 0.025 0.025 0.021
T min -0.078 -0.071 -0.075 -0.080 -0.066 -0.059 -0.061 -0.070 -0.053 -0.065 -0.058
< max 0.147 0.172 0.193 0.161 0.190 0.162 0.181 0.142 0.161 0.155 0.081
g SR -0.492 -0.265 -0.120 -0.120 -0.026 -0.016 0.020 0.043 0.085 0.130 0.796
o
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Calls

Puts

log-differences

cond. quant.

log-differences

Table IV: Raw returns of ATM options

This table provides the same information on monthly returns from decile portfolios of ATM
options as Table III but for a raw option strategy.
Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1
mean  0.006 0.098 0.084 0.104 0.112 0.129 0.120 0.120 0.159 0.185  0.179
sd 0.512 0.591 0.566 0.622 0.646 0.648 0.657 0.659 0.681  0.687  0.413
min ~ -0.919 -0.945 -0.998 -0.998 -0.987 -0.975 -1.000 -1.000 -0.990 -0.982 -1.307
max 2407 1.951 1.836 2.009 2.106 2.175 2.206 2441 2751  2.792  2.317
SR 0.012 0.166 0.149 0.168 0.174 0.199 0.183 0.195 0.234 0269 0.434
mean -0.006 0.058 0.078 0.088 0.111 0.113 0.103 0.137 0.155 0.207  0.213
sd 0.511 0.544 0.568 0.597 0.643 0.634 0.643 0.670 0.676 0.687  0.407
min  -0.918 -0.982 -0.980 -0.992 -0.989 -1.000 -1.000 -1.000 -1.000 -0.975 -0.721
max 2375 1.674 1.737 1.786  2.322  2.093 2.294 2.819 2.157 2475 1.885
SR -0.012  0.107 0.138 0.148 0.173 0.179 0.161 0.205 0.229 0.301  0.523
mean -0.187 -0.164 -0.143 -0.155 -0.103 -0.090 -0.076 -0.081 -0.062 -0.062  0.125
sd 0.615 0.695 0.756 0.767 0.791 0.815 0.841 0.801 0.827 0.838  0.419
min  -0.980 -0.978 -0.987 -1.000 -0.974 -0.990 -0.951 -0.976 -0.979 -0.985 -1.184
max 3.825  4.728  4.338  4.980 4.971 4.575 5.665 4.699  4.665 4.827  1.635
SR -0.304 -0.235 -0.188 -0.202 -0.131 -0.111 -0.090 -0.101 -0.075 -0.074  0.298
mean -0.176 -0.159 -0.122 -0.143 -0.105 -0.100 -0.087 -0.084 -0.077 -0.077  0.099
sd 0.600 0.661 0.740 0.743 0.800 0.788 0.838 0.810 0.850 0.888  0.467
min  -0.965 -0.982 -0.964 -0.992 -0.976 -0.947 -0.976 -0.990 -0.990 -0.958 -1.295
max 3.794  4.017 5.054 4.481 5425 4.738 5.136 4.439 5013 5.054  2.741
SR -0.294 -0.240 -0.164 -0.192 -0.131 -0.127 -0.103 -0.103 -0.090 -0.087  0.212

cond. quant.
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Table V: Returns of trading strategies for options with arbitrary moneyness

This table provides similar information on monthly delta-hedged as well as raw option returns
from decile portfolios to Tables IIT and IV but for options with arbitrary moneyness. Furthermore,
decile portfolios are formed by sorting on options’ IV conditional on their RV and their moneyness,
see Section 3.4 for details.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1

mean -0.023 -0.014 -0.010 -0.008 -0.007 -0.005 -0.004 -0.004 -0.002 0.001 0.024
sd 0.032 0.030 0.029 0.029 0.029 0.029 0.030 0.030 0.029 0.032 0.030

)

g 'T-v min -0.117  -0.093 -0.105 -0.072 -0.067 -0.065 -0.065 -0.081 -0.061 -0.056 -0.078

2 U max 0.186 0.178 0.178 0.182 0.194 0.192 0.192 0.223 0.226 0.271 0.290

g SR -0.726  -0.469 -0.333 -0.285 -0.233 -0.163 -0.143 -0.119 -0.071 0.029 0.816
)
&

E mean -0.023 -0.013 -0.010 -0.008 -0.006 -0.005 -0.004 -0.003 -0.001 0.002 0.025

& w sd 0.032 0.038 0.036 0.036 0.036 0.036 0.035 0.034 0.036 0.039 0.029

% ¥  min -0.103 -0.074 -0.083 -0.085 -0.069 -0.062 -0.067 -0.071 -0.057 -0.049 -0.084

© A max 0.245 0.308 0.341 0.308 0.326 0.299 0.284 0.286 0.334 0.356 0.250

SR -0.712  -0.333 -0.273 -0.213 -0.160 -0.134 -0.099 -0.087 -0.038 0.054 0.844

mean -0.059 -0.014 0.018 0.030 0.039 0.058 0.061 0.066 0.093 0.142 0.201

n sd 0.411 0.444 0.476 0.498 0.524 0.559 0.576 0.600 0.635 0.726 0.515

% min -0.855 -0.889 -0.950 -0.949 -0.961 -0.959 -0.963 -0.948 -0.945 -0.935 -1.429

w O max 1.384 1.477 1.723 2.047 2.321 2.847 3.562 4.246 4.242 5.699 4.871

g SR -0.143  -0.032 0.037 0.060 0.075 0.104 0.105 0.110 0.147 0.196 0.390
=
£

% mean -0.232 -0.202 -0.194 -0.179 -0.181 -0.176 -0.166 -0.152 -0.139 -0.101 0.131

&, sd 0.596 0.750 0.795 0.835 0.862 0.885 0.906 0.888 0.957 1.030 0.603

% min -0.919 -0.919 -0.959 -0.853 -0.929 -0.911 -0.942 -0.957 -0.941 -0.944 -1.634

A max 4.801 6.321 7.279 7.175 7.429 7.135 6.847 6.002 6.918 6.872 4.643

SR -0.389  -0.269 -0.244 -0.214 -0.210 -0.199 -0.184 -0.171 -0.145 -0.098 0.217
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Table VI: Conditioning on further moments of the underlyings’ return distribution

This table presents summary statistics on the monthly returns from long-short portfolios based on
the conditional 10 % and 90 % quantiles of option IV. In our baseline analysis we conditioned on
the second moment (RV) of the underlyings’ return distribution (and additionally on moneyness
for the sample of arbitrary moneyness). For robustness, we additionally condition on the third
(skewness) and fourth (kurtosis) moment of the underlyings’ return distribution. Summary
statistics for the monthly returns (mean, standard deviation (sd), minimum (min), maximum
(max), Sharpe ratio (SR)) are reported when conditioning on skewness (skew) and kurtosis (kurt)
separately and jointly, respectively. We provide results for delta-hedged and raw option strategies
for puts and calls for both ATM options as well as options with arbitrary moneyness. The sample
period is January 1996 to June 2019. For more details on the sample construction and our trading
strategy we refer to Sections 3.1 and 3.4.

mean sd min max SR
o 2 skew 0.021 0.026 -0.088 0.104 0.802
g = kurt 0.021 0.025 -0.058 0.148 0.855
8 O  skew and kurt 0.021 0.025 -0.095 0.144 0.823
<
é n skew 0.018 0.024 -0.093 0.124 0.752
< B kurt 0.018 0.021 -0.046 0.091 0.850
A A gkew and kurt 0.018 0.023 -0.087 0.093 0.770
=
>
w skew 0.230 0.428 -0.982 1.954 0.537
& % kurt 0.227 0.435 -0.864 2.302 0.522
E O  skew and kurt 0.232 0.421 -0.853 2.505 0.552
9]
; n skew 0.090 0454 -0.751 2.812 0.197
« ‘S kurt 0.101 0.466 -1.166 2.826 0.216
Eoa skew and kurt 0.081 0.456 -0.938 3.088 0.178
- 0 skew 0.025 0.030 -0.104 0.291 0.840
g = kurt 0.025 0.029 -0.090 0.275 0.864
g O  skew and kurt 0.025 0.029 -0.094 0.252 0.863
n <
) f'g n skew 0.026 0.028 -0.103 0.174 0.919
§ 3§ B kurt 0.026 0.029 -0.101 0.221 0.902
g A A skew and kurt 0.026 0.027 -0.086 0.150 0.951
Q
g
>
’23 0 skew 0.213 0.505 -1.122 4.872 0.421
5 &8 3 kut 0209 0.511 -1.171 4.565 0.408
S 5 O skewandkurt 0206 0489 -0.975 4.419 0.422
< B
; w skew 0.143 0.571 -1.421 4.664 0.251
8§ B kurt 0.154 0.570 -1.280 4.144 0.270
B A skewand kurt  0.149 0549 -1.335 4.487 0.272
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Table VII: Returns after accounting for transaction costs

This table reports means and t-statistics for monthly returns from our long-short trading strategies
when considering transaction costs. In our baseline analysis we assume investors to buy and sell
options at their mid-point price (MidP). This table reports results when considering ratios of
effective to quoted spreads of 50 %, 75 %, and 100 %, see Section 4.2 for details. Note that we also
take transaction costs for the underlying stocks into account as all equity options in our sample
have to be delivered physically at option exercise.

Long-short portfolios are formed based on the lowest and highest deciles of options’ IV conditional
on their RV (for ATM options) or conditional on RV and moneyness (for options of arbitrary
moneyness), see Section 3.3 for details. We report results from the delta-hedged and raw option
strategies separately for calls and puts. Additionally, we consider the sample of ATM options as
well as the sample of arbitrary moneyness, see Sections 3.1 and 3.4 for further information. The
sample period is January 1996 to June 2019.

MidP 50 % 75 % 100 %

g 0020 0003  -0.006 -0.015
& Calls (147931)  (1.874) (-4707)  (-11.218)
Q
<
5 puis 0017 0002  -0.005 -0.013
s % (13.364)  (1.772) (-3.815)  (-9.350)
= A
< Calls 0213 0021  -0.082 -0.277
5 (8.776)  (0.952)  (-3.642)  (-9.854)
]
~ 0.099  -0.032  -0.109 -0.252
Puts  (3565) (-1.206) (-4.509)  (-8.264)
3 0024 0002  -0.010 -0.021
g % Calls (37000 (1.078) (-5.810) (-12.638)
<1 d
<
§ L pus 0025 0006  -0.004 -0.013
é = (14.178)  (3.286) (-2.136)  (-7.678)
A
> Calls 0.201 0.026  -0.072 -0.238
. (6.553)  (0.972) (-2.727)  (-8.339)
+
= ]
E ~ 0131  -0.010  -0.091 -0.225

Puts (3.644)  (-0.348)  (-3.345)  (-7.918)
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Table VIII: Returns from different estimators

This table provides information on the monthly returns from long-short portfolios formed based
on the conditional 10 % and 90 % quantiles of options’ IV conditional on RV (for ATM options)
and conditional on RV and moneyness (for options of arbitrary moneyness). Details on the trading
strategies are provided in Section 3.4.

Conditional quantiles are computed based on three different estimators, see Section 2.3 for details.
We compare our baseline estimator (leveraging estimator) to the copula estimator by Kraus and
Czado (2017) and the quantization estimator by Charlier et al. (2015b). For illustrative purposes
we also include results from a conditional double-sort (ATM) and triple-sort (arbitrary moneyness)
into 10 portfolios for each variable. We report the mean, standard deviation (sd), and Sharpe
ratio (SR) of monthly returns for the delta-hedged and raw option strategy separately for calls
and puts. The strategies are evaluated for ATM options and for options of arbitrary moneyness
between January 1996 and June 2019, see Section 3.1 for information on the sample construction.

Leveraging Copula Quantization Portfolio sort

2 4 mean 0.020 0.021 0.019 0.018
5 © =d 0.023 0.025 0.022 0.022
I3 O SR 0.842 0.836 0.874 0.835
'g?o w mean 0.017 0.018 0.016 0.018
g 5 sd 0.021 0.022 0.020 0.022
s B SR 0.796 0.813 0.808 0.813
= £
H
< A w mean 0.213 0.223 0.208 0.201
2 3 sd 0.407 0.447 0.408 0.414
j:: O SR 0.523 0.499 0.510 0.487
()
; w mean 0.099 0.113 0.094 0.113
& 5 sd 0.467 0.483 0.446 0.483
A & SR 0.212 0.235 0.210 0.235
a w mean 0.024 0.026 0.023 0.023
5 T s 0.030 0.032 0.030 0.028
I3 O SR 0.816 0.796 0.786 0.803
n
3 ?ﬂ w mean 0.025 0.023 0.028 0.023
§ o 5 0.029 0.032 0.030 0.032
> Q
g = &~ SR 0.844 0.730 0.955 0.730
] o
£ =
[)
>
g A, mean 0.201 0.221 0.190 0.197
£ &8 3T s« 0.515 0.556 0.510 0.493
8 § O SR 0.390 0.398 0.372 0.399
< 9}
; o mean 0.131 0.147 0.198 0.147
& 5 sd 0.603 0.611 0.636 0.611
E & SR 0.217 0.241 0.312 0.241

39



Table IX: Including options on dividend-paying stocks

In our baseline analyses we excluded all options with an ex-dividend date during the remaining
life of the contract. This was done to reduce the impact of early exercise. In this table we present
summary statistics (mean, standard deviation (sd), minimum (min), maximum (max) and Sharpe
ratio (SR)) of monthly returns that we obtain when we do not exclude options on dividend-paying

stocks.

Long-short portfolios are formed based on the conditional 10 % and 90 % quantiles of options’ IV
conditional on RV (for ATM options) or conditional on RV and moneyness (for the option sample
of arbitrary moneyness). We report returns from the delta-hedged and the raw option strategy
separately for calls and puts. Details on the trading strategies can be found in Section 3.4. The
ATM option sample consists of 326,224 calls and 299,924 puts while the sample of arbitrary money-
ness comprises 2,682,492 calls and 2,145,435 puts. The sample period is January 1996 to June 2019.

mean sd min max SR
Calls  0.019 0.022 -0.045 0.128 0.873
s Delta-hedged py¢s 0016 0.019 -0.042 0075 0.830
<Hn Calls 0205 0419 -0.762 2.641 0.490
Raw returns  p 0.110 0.439 -0.855 2.649 0.251
5 @ Calls  0.023 0.028 -0.070 0.271 0.816
£ g Deltachedged  pyis 0023 0027 -0081 0225 0.858
o] £
be
2 g Calls  0.193 0487 -1.131 4.432 0.395
< g Rawreturns  pyg 0139 0572 -1.542 4313 0.242
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Figure 1: Conditional portfolio sort

This panel illustrates a conditional double-sort and derived conditional quantile curves based on
200 simulated observations according to ¥ = % - X + % - X - € where € and X follow a standard
normal and a Beta(5,5) distribution, respectively. We first sort observations into 5 bins based on
their x-values (blue lines according to the 20 %, 40 %, 60 %, and 80 % (unconditional) quantile of
all x-values). Subsequently, in each bin we further sort on the y-value. The dashed black and red
lines mark the 20 % and 80 % quantile of y conditional on each of the 5 bins. The grey lines mark
the 40 %, 60 %, and 80 % quantiles. Finally, we derive a long-short portfolio controlling for x by
choosing observations in the lower quintile in each of the 5 bins (i.e., all observations below the
black dashed line) for the long and observations in the upper quintile (i.e., all observations above
the red dashed line) for the short portfolio. Observations that are not in the shaded areas do not
enter into the long-short portfolio. For more details we refer to Section 2.2.

Connecting the red dashed lines inside each of the 5 bins yields a step function that approximates
the true 80 % conditional quantile curve of Y conditional on X. The analogue is true for the black
dashed lines, see Figure 2 for an illustration.
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Figure 2: double-sort vs. conditional quantile curves

This figure compares the 20 % (black dashed line) and 80 % quantiles of y given x according
to the double-sort from Figure 2 to the true conditional quantile curves of y given x. Note
that the illustrative example is based on simulated data for which the true conditional quantile
curves are known. For example, the 20 % conditional quantile function is linear and given by
g20%(z) = (0.5 + 0.1 - ¢555™) - © where g55/™ denotes the (unconditional) 20 % quantile of the
standard normal distribution. This figure illustrates that conditional portfolio sorts can be
interpreted as a nonparametric estimator of conditional quantiles.

Based on the conditional portfolio sort, we want to form a long-short portfolio that is long (short)
in low (high) values of y while controlling for x. However, as the step functions obtained via
conditional portfolio sorts only provide a rough approximation to the true quantile curves, a
long-short portfolio that is long (short) in securities corresponding to the observations below
(above) the black (red) dashed line cannot properly control for x, see Figure 3.
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Figure 3: Long-short portfolio derived from a double-sort to control for x

This Figure illustrates limitations on forming a long-short portfolio via double-sorts that is long
(short) in low (high) values of y while controlling for x. The black and red dashed lines are derived
from a conditional portfolio sort (first on x, then on y), see Figure 1. Securities corresponding to
the observations below (above) the black (red) dashed line enter into the long (short) portfolio.
Since the step functions only provide a rough approximation to the true conditional quantile
functions of y given x (see Figure 2) there are limitations in controlling for x. The black and red
dashes on the x-axis correspond to the observations in the long and short portfolio, respectively,
and illustrate that there remain systematic differences in x between the two portfolios. This is
clear from mostly black dashes for low and red dashes for high x-values with clusters of black and
red dashes in between. If instead portfolios were formed based on the true conditional quantile
curves from Figure 2 the black and red dashes would be perfectly mixed along the x-axis.
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Figure 4: Sorting options on the log difference of RV and IV

This Figure shows the value pairs (RV, IV) of all ATM call options in our sample in January 2010.
According to Goyal and Saretto (2009) options are sorted on the log-differences of RV and IV into
decile portfolios. Options in decile 1 (red data points) constitute the short portfolio, while options
in decile 10 enter into the long portfolio (black data points).

Sorting on the log-differences (unconditionally) and choosing the highest and lowest 10 % of
the value pairs (RV, IV) is equivalent to requiring I'V; < RV; - e”%0% in the long portfolio and
IV; > RV; - e~ 910% in the short portfolio, where q1gy and ggqy; denote the (unconditional) empirical
10 % and 90 % quantiles of the log-differences of RV and IV, respectively. This translates into the
black and red dash-dotted straight lines in the scatter plot.

The red and black dashes on the x-axis correspond to the value pairs (RV, IV) in the long and short
portfolio and illustrate that there are systematic differences in RV between the two portfolios. The
faint dashed lines correspond to the nonparametric 10 % (black) and 90 % (red) quantile curves
of IV conditional on RV (see also Figure 6).
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Figure 5: Sorting options on the difference of RV and IV

This Figure shows the value pairs (RV, IV) of all ATM call options in our sample in January 2010.
Cao and Han (2013) define the VRP as the difference of RV and IV. We form a long-short portfolio
where options in decile 1 according to the difference of RV and IV (red data points) constitute the
short portfolio, while options in decile 10 enter into the long portfolio (black data points). Note
that the only difference to Figure 4 is that we are sorting on the (simple) difference instead of the
log difference of RV and IV.

Sorting on the difference (unconditionally) and choosing the highest and lowest 10 % of the value
pairs is equivalent to requiring IV; < RV; — ggg in the long portfolio and I'V; > RV, — q1g9 in the
short portfolio, where ggy and gqqy, denote the (unconditional) empirical 10 % and 90 % quantiles
of the differences of RV and IV, respectively. This translates into the black and red dash-dotted
straight lines in the scatter plot.

The red and black dashes on the x-axis correspond to the value pairs (RV, IV) in the long and short
portfolio and illustrate that there are systematic differences in RV between the two portfolios. The
faint dashed lines correspond to the nonparametric 10 % (black) and 90 % (red) quantile curves
of IV conditional on RV (see also Figure 6).
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Figure 6: Sorting on IV conditional on RV

This Figure shows the value pairs (RV, IV) of all ATM call options in our sample in January 2010.
Options are sorted according to IV conditional on RV into decile portfolios. Options in decile
10 (red data points) constitute the short portfolio, while options in decile 1 enter into the long
portfolio (black data points). That is, the long (short) portfolio is constituted of the 10 % of the
options with the highest (lowest) IV conditional on RV.

More exactly, for option 7 in the long portfolio we require F'(IV;|RV;) < 10 % while options in
the short portfolio have to fulfill F(IV;|RV;) > 90 %, where F(-|RV;) denotes the conditional
cumulative distribution function of implied volatility given a specific level of realized volatility
(RV;). This translates into the red and black dashed conditional quantile curves. The faint black
and red dash-dotted lines correspond to the log-difference of RV and IV and are included for
comparison.

The red and black dashes on the x-axis correspond to the value pairs (RV, IV) in the long and
short portfolio and illustrate that there are on average no obvious differences in RV between the
long and short portfolio as opposed to Figure 4.
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