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1. Introduction

In the aftermath of the 2015 Paris Climate Conference, significant attention has been placed on the

relation between environmental degradation, as measured by CO2 emissions, and financial system

risk. A recent report by the Network for Greening the Financial System (NGFS, 2019) highlighted

that climate change is affecting the financial system, and is a contributor to systemic risk. Central

banks have identified this as an issue of great importance. The Bank of England Governor, Mark

Carney, highlighted the threat of climate change to the stability of the financial system (Carney,

2015). Additionally, regulators acknowledge that climate change is a source of risk relevant for the

soundness of financial institutions1. Contributions have explored the link between climate change

and firm credit risk (Capasso et al., 2020), showing that companies with high carbon footprint are

more likely to default. This result has implications for financial stability (NGFS, 2019), and opens

up the issue of exploring the link between CO2 emissions and the aggregate systemic risk from a

macro-prudential policy perspective.

The present paper explores the relation between CO2 emissions and systemic risk at an aggregate

level in the U.S. for the period 1973-2017. Systemic risk refers to the risk that the financial system

may become so impaired that severe negative consequences on various facets of economic activity

would be inevitable. Systemic risk affects real economic activity (Giglio et al., 2016), and has

implications for the banking sector and financial stability (Teteryatnikova, 2014).

To motivate the present work, CO2 emissions and systemic risk are theoretically linked on the basis

of a physical risk effect and a transition risk effect (Bank of England, 2018). The physical risk

effect focuses on the impact of CO2 emissions-driven events (heat waves, droughts, floods, storms)

on asset values, the creditworthiness of borrowers, and the losses they face. Extreme weather-

related events result to losses for borrowers, reduce their ability to repay loans, and increase the

credit risk of banks. If losses from physical risks are insured, the cost is borne by the financial

sector thereby increasing liabilities. Furthermore, the physical risk effect can induce a deterioration

of borrowers' ability to repay their debt and thus cause depreciation in the value of assets used for

collateral by banks, thereby negatively affecting their assets. In addition, banks hit by such risks,

may find themselves in a difficult position to refinance themselves, thereby facing liquidity risks

with a detrimental effect on both sides of their balance sheets2.

1 https://currency.com/climate-change-will-threaten-banks-profitability-report (accessed 10 July 2020).
2 See Berger et al. (2020), section 3.3, for a summary of recent studies that look at how severe weather events
impact banks.
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The transition effect refers to an adjustment towards a low-carbon economy by reducing CO2

emissions over a long period in accordance with a carbon abatement agreement such as the Paris

Agreement or the Kyoto Protocol. To achieve this goal, the financial system may need to make

adjustments, which could prompt a re-assessment of the value of assets with many carbon-intensive

assets becoming ‘stranded’ (Delis et al., 2018). In the present study, we focus on the physical risk

effect, as implementation of CO2 emissions reduction agreements (Kyoto Protocol and Paris

Agreement) by the U.S., necessary for transition risks to arise, is rather limited.

The present work is the first attempt, to our knowledge, to explore the impact of CO2 emissions on

systemic risk, and makes several contributions. Firstly, we integrate the physical risk effect into the

Merton’s (1974) distance-to-default approach and provide a simple theoretical framework which

documents a positive impact of CO2 emissions on systemic risk, namely, systemic risk increases

after an increase in CO2 emissions. Secondly, we use annually available data for CO2 emissions,

monthly and quarterly data for CATFIN (Allen et al., 2012) as an indicator for systemic risk, and

a mixed frequency VAR (MF-VAR) approach (Ghysels, 2016) which is flexible enough to

accommodate variables measured at different frequencies within a vector autoregressive (VAR)

framework. Thirdly, we provide robust empirical evidence that CO2 emissions have a positive

impact on systemic risk, confirming the physical risk effect. Lastly, we illustrate that increasing

CO2 emissions are linked with decreasing bank profitability, and that decreasing bank profitability

is associated with increasing systemic risk. This highlights that bank profitability is the channel

through which the CO2 emissions impact is transmitted to systemic risk.

The rest of the paper is as follows. Section 2 provides the theoretical framework. Section 3 describes

the data and the methodology. Section 4 discusses the empirical results, tests their robustness, and

ascertains that bank profitability is the transmission channel. Section 5 concludes.

2. Theoretical framework

Systemic risk emerges from economic conditions that cause banks to reduce the provision of credit

(Allen et al., 2012), and from widespread catastrophic events creating risk factors common among

banks (Kashyap and Stein, 2000). In the present paper, we consider CO2 emissions as such a risk

factor. To model the impact of CO2 emissions on systemic risk, we adopt Merton's (1974) options-

theoretic distance-to-default approach, and adjust it by integrating the physical risk effect.
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Merton’s (1974) approach is based on the probability of default (PD), a determinant of systemic

risk (Carlson et al., 2008; Giesecke and Kim, 2011; Allen et al., 2012; Financial Stability Review,

2015; Giudici and Parisi, 2016). To define PD, let � � be the value of the aggregate banking sector's

assets, which follows a geometric Brownian motion and its dynamics is (Merton, 1974):

� � � = � � � � � + � � � � � � (1)

where � � � is the banking sector’s asset value change, μ is the drift term, σ is the annualized assets

volatility, and dz is a Wiener process. Assuming that the log of � � is normally distributed, we get:

� � � � ~ � (� � � � + (� − 
� �

�
)(� − � ), � � (� − � )) (2)

Debt is assumed to consist of a single bond with maturity T and face value K (Capasso et al., 2020).

At time T, the shareholders’ payoff is the residual value of the assets once the debt is repaid, ( � � −

� ). The probability of default at time t (PDt), that is the probability that the value of � � will be less

than or equal to the value of liabilities (K) at the time of maturity (T), is � � � = Pr(� � ≤ � ). Based

on Merton (1974), and considering logs, the probability of default (PD) is:

� � � = Pr(ln(� � ) −  ln (� ) ≤ 0) ⇒

� � � = � � −
� � (� � � � � �

� �

�
� (� � � )� � � (� )

� √ � � �
� = � � � | �

∗` (3)

where Φ is the cumulative distribution function of the standardized normal variable. Denoting the

level of CO2 emissions by c and the benchmark level of CO2 emissions by c*, PD in (3) is the PD

conditional on c*, � � |� ∗. The physical risk effect is integrated into (3) through K and � � .

The physical risk effect arises after an increase in CO2 emissions, Δc > 0. This leads to climate

change risk and weather-related events3, causing financial losses to business and households. If

3 Climate change risk is caused by CO2 emissions: According to the Intergovernmental Panel on Climate Change (2014),
CO2 emissions accounted for 78% of the total green house gas emission increase during 1970 -2010. Fraction of CO2



4

these CO2-driven losses are insured, the financial sector will bear the cost, with the sector's

liabilities, K’, going up, K’ > K. From (3), the new PD conditional on Δc > 0, PD|Δc > 0, is:

� � � | � � > 0 = � � −
� � (� � )� � � �

� �

�
� (� � � )� � � (� � )

� √� � �
� (4A)

The physical risk effect, in addition, can induce a deterioration of borrowers' ability to repay their

debt if weather-related losses are not insured, and cause depreciation in the value of assets used for

collateral by banks, thereby negatively affecting bank assets. In terms of (1), this is reflected in a

reduction of μ, μ’ < μ, and thus � �
� < � � . In this case, the PD is written as:

� � � | � � > 0 = � � −
� � (� �

� )� � � �
� �

�
� (� � � )� � � (� � )

� √� � �
� (4B)

Expression (4B) provides an adjusted Merton (1974) theoretical framework which integrates the

physical risk effect, and reflects the impact of CO2 emissions on PD and consequently (Carlson et

al., 2008; Giesecke and Kim, 2011) on systemic risk. An increase in CO2 emissions leads, if losses

are insured, to an increase in K, K’, which subsequently causes the distribution Φ to shift. Figure

1A illustrates this shift. This Figure shows that an increase in CO2 emissions causes an increase in

PD and thus to systemic risk. In addition, the physical risk effect can negatively affect the value of

bank assets, rendering � �
� < � � and causing a further shift of Φ to the right. Figure 1B portrays this

shift. The combined shift of the distribution Φ to the right, namely the sum of the two shifts shown

in Figures 1A and 1B, establishes a positive impact of CO2 emissions on systemic risk. The validity

of this conclusion is empirically examined next4.

3. Variables and methodology: the mixed frequency VAR (MF-VAR) model

3.1 Variables and data sources

We consider annual CO2 emissions (in kt) for the period 1973-2017. The 1973-2016 data are

from World Bank, whereas the 2017 data are from FRED5. The series is expressed in terms of

emissions remains in the atmosphere for centuries and causes irreversible damage on climate (Fuss et al., 2009). Thus,
climate changes arise from CO2 emissions into the atmosphere over all time periods (Batten et al., 2016).
4 This framework could also accommodate the transition risk effect which arises from a long run reduction in c, Δc<0 in
accordance with a carbon abatement agreement. Such analysis, however, is beyond the scope of the present paper.
5The series from FRED starts from 1980, hence we considered the World Bank as the data source with a start from 1960.
See: U.S. Energy Information Administration, Total Carbon Dioxide Emissions From All Sectors, All Fuels for United
States [EMISSCO2TOTVTTTOUSA], retrieved from Federal Reserve Bank of St. Louis;
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annual percentage changes. Systemic risk is measured using the CATFIN indicator developed by

Allen et al. (2012). CATFIN measures the aggregate catastrophic risk in the financial sector, and

is a Value-at-Risk (VaR) measure estimated from a cross-section of financial firms at any point in

time. It is defined as the average of three different VaR measures: two using parametric

distributions and one using the nonparametric method. It is a macro-measure of systemic risk,

adopting the view that systemic risk can emerge through general factors that cause markets to freeze

up. In other words, CATFIN determines the macroeconomic implications of aggregate risk taking

in the financial system. CATFIN has been used widely in the literature (Shan, 2018) as a macro-

level aggregate cross-sectional measure of systemic risk that identifies the overall level of systemic

risk in the financial system at each point in time6.The data for CATFIN is from Turan Bali's web

site and are available on a monthly basis from 19737.

We also obtain annual data for the real GDP growth8 to be used as a control variable. The inclusion

of real GDP growth is based on two reasons. First, Giglio et al. (2016) have shown that systemic

risk and macroeconomic activity are linked, suggesting that one needs to control for any macro

impact on systemic risk. Second, based on the well known relation between real GDP and CO2

emissions (Kuznets, 1955), the main determinant of CO2 emissions is real GDP. This highlights the

need to account for the impact of real GDP growth on CO2 emissions. To explore whether bank

profitability is an impact transmission channel, we consider data for both ROA and ROE9. The

sample extends over the period 1973-2017, except for bank profitability data available from

1984Q1 on a quarterly basis. Based on ADF unit root tests, all variables are stationary. All series

are pictorially presented in Figure 2.

3.2 Mixed-frequency VAR model and estimation

Modeling the bilateral link between annual percentage changes in CO2 emissions, Δc, and monthly

(and quarterly) CATFIN can be achieved using the mixed frequency VAR (MF-VAR) approach by

Ghysels (2016). To illustrate the MF-VAR model, we consider two frequencies of data, a monthly

https://fred.stlouisfed.org/series/EMISSCO2TOTVTTTOUSA.https://data.worldbank.org/indicator/EN.ATM.CO2E.K

T?locations=US.
6 Although several other systemic risk measures have been proposed in the literature, we rely on CATFIN due to the fact
that publically available CATFIN data are available from 1973.
7 https://sites.google.com/a/georgetown.edu/turan-bali/
8 U.S. Bureau of Economic Analysis, Real Gross Domestic Product [GDPC1], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/GDPC1
9 Federal Financial Institutions Examination Council (US), Return on Average Equity for all U.S. Banks [USROE],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/USROE.
And Federal Financial Institutions Examination Council (US), Return on Average Assets for all U.S. Banks [USROA],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/USROA.
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(high) frequency and a low (annual) frequency, so there are m=12 high frequency periods per low

frequency. The endogenous variables in the VAR include � � (� �
� ) observed at low frequency and

CATFIN (� �
� ) observed at high (monthly) frequency.

To briefly characterize the MF-VAR model, let the annual � � be stacked in matrix � � , and the

12 monthly variables of CATFIN be stacked in � � . Let � � ,� � represent � � observed at the low

frequency period � � , and � � ,� � ,� represent CATFIN observed at the t-th high frequency period during

low frequency period � � . By stacking � � into � � and the 12 monthly variables of CATFIN into � � ,

the MF-VAR model is written (ignoring the intercepts and exogenous variables) as:

⎣
⎢
⎢
⎢
⎡
� � , � � ,�

� � , � � , �
...

� � , � � , � �

� � , � � ⎦
⎥
⎥
⎥
⎤

= ∑ �

� �
� , � ⋯ � �

� , � �

⋮ ⋱ ⋮

� �
� � ,� ⋯ � �

� � ,� �
�

�
� � �

⎣
⎢
⎢
⎢
⎡
� � ,� � � � , �

� � , � � � � ,�
...

� � , � � � � , � �

� � , � � � � ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
� � , � � ,�

� � , � � ,�
...

� � , � � , � �

� � , � � ⎦
⎥
⎥
⎥
⎤

(5)

where � �
� , � is 1 × 1, � �

� � , � is 1 × 1, and � �
� , � � is 1 × 1 for all j, a, b = 1,...13, and � �

� � , � � is � � ×

� � . To interpret (5), we stack the months of January…, and December of the systemic risk indicator

of year t together with the year t data of � � . Estimation of (5) is carried out using the unrestricted

MIDAS (U-MIDAS) or the Bayesian method (Ghysels, 2016). The former applies VAR least

squares to estimate the stacked matrix of coefficients, and is our main estimation approach. For

robustness, we also consider Bayesian estimation10. Lastly, Granger causality and impulse response

analysis between annual CO2 emissions and monthly CATFIN is conducted based on Ghysels

(2016).

In the empirical analysis, and for robustness purposes, we also consider a MF-VAR model

comprising of annual � � and quarterly CATFIN. In this model, m=4 and � �
� ,� is 1 × 1, � �

� , � is 1 ×

1, and � �
� ,� is 1 × 1 for all j, a, b = 1,...5, and � �

� ,� is � � × � � in terms of the above notation. The

quarterly CATFIN data is based on the CATFIN value of March for the 1st quarter, June for the

2nd quarter, September for the 3rd quarter and December for the 4th quarter of each year. Lastly,

for further robustness checks, we consider an 'annual' VAR model, comprising of annual � � and

annual CATFIN data obtained as the average of the monthly CATFIN values.

10 This is analogous to Bayesian VAR, and requires the specification of prior distributions for the parameters and the
residual covariance matrix. For obtaining the prior distributions and more technical details, we follow Ghysels (2016).
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4. Empirical evidence

4.1. Main results

We start by estimating the MF-VAR model including the monthly CATFIN and the annual

percentage changes in CO2 emissions (� � ), as reflected in (5). Table 2 reports the results based on

the U-MIDAS approach11. For the estimation, CATFIN is transformed into twelve separate

variables, one variable for each month in the year. In terms of notation in Table 2, CATFIN_1 is

the variable for the 1st month of the year, CATFIN_2 is for the 2nd month, ... and CATFIN_12 is

for the 12th month. In line with the discussion of the MF-VAR model in (5), CATFIN_1,

CATFIN_2, ... CATFIN_12 appear as endogenous variables along with Δc. Further, CATFIN_1(-

1) refers to the 1st month of the previous (lagged, denoted by '(-1)') year. For example, if the

reference year is 2000, 'CATFIN_1' refers to January 2000, 'CATFIN_2' to February 2000, ..., and

'CATFIN_12' to December 2000. Furthermore, 'CATFIN_1(-1)' refers to January 1999,

'CATFIN_2(-1)' to February 1999, etc.

Starting with the impact of real GDP growth on CO2 emissions and on the basis of the � � equation

(last column in Table 2), we find that growth has a positive and significant effect on CO2 emissions

(t-statistic=5.741). This is in line with literature suggesting a positive link between macro activity

and CO2 emissions (Holtz-Eakin and Selden, 1995). The effect of growth on systemic risk is

negative and statistically significant at the 6% level (t-statistic=-1.940), suggesting that the stronger

the real GDP growth the lower will be the systemic risk. These results justify the use of real GDP

growth as a control variable in the empirical model.

We next turn to assessing the impact of lagged annual � � (� � (-1)) on monthly systemic risk in the

following year. In other words, we examine the impact of an increase in CO2 emissions, say, in

2000 on the systemic risk in January 2001, February 2001, ..., December 2001. As Table 2

illustrates, an increase of lagged � � (� � (-1)) exercises a positive and statistically significant at the

5% level impact on the systemic risk of the last 2 months of the subsequent year (t-statistic=1.987

and 3.158 for the equations of CATFIN_11 and CATFIN_12 respectively). Additionally, a positive

and statistically significant at the 10% level impact is traced for the systemic risk of the 4th and 9th

months of the subsequent year (equations for CATFIN_4 and CATFIN_9) (t-statistic=1.900 and

1.708, respectively).

11 In this model as well as in all additional MF-VAR and VAR models, a lag length of 1 is used for parsimony.
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To shed further light into the relationship between annual changes in CO2 emissions and the

monthly systemic risk, we follow Ghysels (2016) and perform Granger causality tests using the

MF-VAR results in Table 2. We explore whether there is Granger causality from CO2 emissions to

the systemic risk of each of the 12 months in the following year. The results are reported in Table

3. The findings suggest that there is a statistically significant at the 5% level causality from CO2

emissions to the systemic risk of November and December of the following year, in line with the

results in Table 2. We lastly conduct impulse response and accumulated impulse response analysis

for each of the 12 monthly systemic risk values to impulses from CO2 emissions. The results are

reported graphically in Figures 3A and 3B. In line with the findings in Tables 2 and 3, the findings

suggest that CO2 emissions trigger a statistically significant response of the November and

December systemic risk of the following year. Based on accumulated responses, the results are

statistically significant for the March and April systemic risk as well.

We can interpret these results as evidence supporting the physical risk effect. Furthermore, one

could infer that an increase in the U.S. CO2 emissions in 2020 will contribute to an increase in the

economy's systemic risk in November and December 2021 (with possibly early signs as early as

April 2021). Given that an increase in systemic risk has been found to cause detrimental effects on

the U.S. macro-economy (Giglio et al., 2016), this time window provides an opportunity for policy

makers to take actions in order to control increasing systemic risk associated with CO2 emissions,

and thus avoid its negative knock on effect on the macro-economy.

4.2. Robustness

We perform two types of robustness checks on the previous findings. The first refers to alternative

methods of time aggregation of the systemic risk (CATFIN) data, and the second to adopting the

Bayesian estimation method of the MF-VAR model.

We start by considering quarterly data on CATFIN, based on the March, June, September, and

December CATFIN values. Hence, instead of 12 monthly CATFIN variables in Table 2, we now

have 4 quarterly CATFIN variables, CATFIN_1 for the 1st quarter, ..., and CATFIN_4 for the 4th

quarter. Using the quarterly CATFIN and the annual CO2 emissions data, a new MF-VAR model

is estimated using the U-MIDAS approach. Results are reported in Table 4. In line with the results

in Table 2, the real GDP growth enters in the Δc equation (last column in the Table) with a positive

sign and a statistically significant coefficient (t-statistic = 6.884). Also in line with Table 2, CO2

emissions have a positive and statistically significant (t-statistic = 2.675) impact on CATFIN_4,
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namely the CATFIN value in the 4th quarter of the following year. We next test, using this MF-

VAR model, the null hypothesis that there is no Granger causality from CO2 emissions to the

systemic risk of the 4th quarter. Testing this hypothesis yields a chi-squared statistic of 7.150 with

a p-value of 0.007, thereby rejecting the null in favor of the alternative of causality. Impulse

response and accumulated impulse response analysis, presented in Figures 4A and 4B, provide

further support to the robustness of our results with respect to using quarterly, instead of monthly,

data for systemic risk.

In a further time-aggregation robustness check, we consider annual data on CATFIN based on the

simple average of the 12 monthly values within a year. Using this series and annual CO2 emissions,

we estimate an 'annual' VAR and the results are reported in Table 5. Consistently with the MF-

VAR results on monthly and quarterly CATFIN data, Table 5 shows that CO2 emissions exercise

a positive and statistically significant (at the 5% level) effect on the average systemic risk of the

following year. Testing the null that CO2 emissions do not Granger cause next year's systemic risk

yields a chi-squared statistic of 3.830 with a p-value of 0.05.

In the second type of robustness checks, we consider the Bayesian, instead of the U-MIDAS,

approach to re-estimate the MF-VAR model with quarterly CATFIN (and annual changes in CO2

emissions). The results, reported in Table 6, indicate that changing the estimation method does not

qualitatively alter the results. The main conclusion from these robustness checks is that the evidence

documenting a positive impact of the U.S. CO2 emissions on the systemic risk of the following year

is robust to alternative time aggregation and estimation methods.

4.3. Identifying the channel of impact transmission: bank profitability

Having revealed a robust impact from CO2 emissions to the systemic risk of the U.S. economy, we

proceed to identify the channel through which this impact is transmitted. The physical risk effect

can induce a deterioration of borrowers' ability to repay their debt and cause depreciation in the

value of assets used for collateral. If assets are insured, then physical risks may cause a detrimental

effect on bank profitability. In addition, banks hit by such risks, may find themselves in a difficult

position to refinance themselves, thereby facing liquidity risks with a detrimental effect on their

balance sheets. These arguments suggest that a possible candidate channel through which CO2

emissions impact the systemic risk is through bank profitability.
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To empirically assess the role of bank profitability as a possible transmission channel, we revisit

the MF-VAR model in Table 4, with the quarterly CATFIN and annual CO2 emissions data, and

allow for the change in bank profitability (change in ROE, ΔROE) as an additional variable12. Thus,

we estimate an MF-VAR model comprising of 3 endogenous variables, namely the annual

percentage changes in CO2 emissions Δc, the quarterly CATFIN and the quarterly change in bank

profitability (ΔROE), and control for real GDP growth. The results are reported in Table 7. 

Table 7 shows that the positive and statistically significant impact of real GDP growth on CO2

emissions is preserved, providing further justification for the inclusion of real GDP growth as a

control variable. In addition, the impact of CO2 emissions on CATFIN_4 (the systemic risk in the

following 4th quarter) is still present: the coefficient is positive and statistically significant (t-

statistic = 2.342), in line with the previous results.

Importantly, we reveal a bilateral relation between CO2 emissions and bank profitability. Changes

in bank profitability (ΔROE) are shown to be negatively related with changes in CO2 emissions in

the following year. Indeed, ΔROE_2 and ΔROE_3 enter with a negative and statistically significant 

value in the Δc equation (last column in Table 7). Thus, as bank profitability increases, CO2

emissions decrease, and vice versa. A possible interpretation of this finding is that as bank

profitability increases, banks invest in and switch to a greener technology. Importantly, Green

Investment Banks (GIBs) in the U.S. (as well as in other countries) have been established both at

state level (California, Connecticut, Hawaii, New Jersey, New York and Rhode Island) and at

country level, to facilitate private investment into domestic low-carbon, climate-resilient (LCR)

infrastructure and to finance clean energy projects13. In addition, green financial products and green

bonds have been developed as vehicles to provide funding for clean energy projects14.

An opposite link is also traced: CO2 emissions are found to exercise a negative and statistically

significant effect on the change in bank profitability in the following quarter (ΔROE_1), suggesting 

that an increase in CO2 emissions is perceived as entailing a decrease in bank profitability. In

addition, Table 7 illustrates that changes in bank profitability exercise a negative impact on

systemic risk in the following year. Indeed, ΔROE_4(-1), the change in bank profitability in the 4th

12 As the bank profitability data are only available on a quarterly (and not on a monthly) basis, we consider the MF-VAR
model with quarterly CATFIN in Table 4.
13 According to the Green Bank Network (www.greenbanknetwork.org), there are 72 green banks in the U.S.
14 These products are targeted to home or business owners and retail and investment banks. Connecticut Green Bank, for
example, has driven growth in its residential and commercial segments through a residential solar loan and lease program,
credit support mechanisms for energy efficiency, and a commercial property assessed clean energy product for a variety
of energy conservation measures (https://www.nrel.gov/state-local-tribal/basics-green-banks.html).
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quarter of the previous year, is shown to exercise a negative impact on CATFIN_1, CATFIN_2,

CATFIN_3, and CATFIN_4 (namely, the systemic risk in the 1st, 2nd, 3rd, and 4th quarters of the

following year). Further, ΔROE_2(-1) also exercises a negative an statistically significant impact 

on CATFIN_215.

To ensure robustness of the results with respect to ROE, we also consider the change in ROA

(ΔROA) as an alternative measure of bank profitability. Results are reported in Table 8. The Τable 

shows that the previously identified link between CO2 emissions and ΔROE is preserved: CO2

emissions exercise a negative and statistically significant effect on ΔROA__1, and ΔROA_4(-1) 

has a negative impact on CATFIN_1, CATFIN_2, CATFIN_3, and CATFIN_4. Thus, the

previously identified relations hold irrespective of whether ROA or ROE is used.

The combination of the two previously revealed links, namely from CO2 emissions to bank

profitability, and from bank profitability to systemic risk, echoes the existence of a bank

profitability channel in the transmission of the impact from CO2 emissions to systemic risk: bank

profitability is the interim variable, which receives the impact of the CO2 emissions and

subsequently transmits this impact on to systemic risk. The main conclusion which arises is that

CO2 emissions in the U.S. have an impact on the economy's systemic risk in the next year, with the

main channel through which this impact is transmitted being bank profitability.

4.4. Insured losses

Climate-related events may hit businesses and households which, in order to insure themselves,

pay an insurance premium and pass the risk of losses to the financial (banking) sector. The latter

receives the insurance premium and undertakes the risk of covering the insurred losses. The

revealed link from CO2 emissions to bank profitability is based on the argument that firms and

households insure themselves against climate-related losses thereby shifting these losses to banks.

This argument is supported by Hoeppe (2016), who shows that there is high insurance penetration

for all convective weather-related loss events in the U.S. over most of the sample period. Based on

the NatCatSERVISE data from Munich RE16, Hoeppe (2016) concludes that in the U.S. the ratio

15 Table 7 also shows that ΔROE_1(-1)  exercises a positive impact on CATFIN_2. Taking, however, the cumulative 
impact on CATFIN_2 which arises from all 4 quarters of ΔROE of the previous year (i.e. from ΔROE_1(-1), ΔROE_2(-
1), ΔROE_3(-1), and ΔROE_4(-1)), the cumulative impact is strongly negative.  
16 https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html



12

of the insured losses in terms of the overall losses in the last years has been far above 50%, and the

insurance industry had to pay even about 2/3 of the overall losses.

The fraction of insured losses to overall losses regarding convective storm events in the U.S. over

the period 1980-2017 is graphically shown in Figure 5. As shown in this Figure, insured losses

account for more than 50% of overall losses for all years in this period. Especially in 2017 for the

U.S., as presented in the TOPICS Geo Natural Catastrophes (2017), all major loss events were

characterized by high insurance coverage. A summary of these events is provided in Table 9. In

almost all these events, the insured losses were more than 60% of the overall losses. Thus, since

most losses are insured, a significant part of the cost of climate change related losses is carried by

the financial system, which explains the negative impact of CO2 emissions on bank profitability.

5. Policy implications

One way of managing by regulators of the positive impact of increasing CO2 emissions on systemic

risk would involve government-sponsored insurance schemes for natural disasters, such as the

National Flood Insurance Program (NFIP), the Texas Windstorm Insurance Association (TWIA),

and the Louisiana Citizens Property Insurance Corporation. Federal or state explicit insurance

support (reinsurance) for the financial and banking sector facing increasing insured losses after a

climate change related natural disaster, would be a step towards neutralizing K from CO2 emissions

(in terms of (4A)), and thus rendering K independent of changes in c, Δc (ΔΚ=0).

Integrating climate change into the supervisory framework is a further policy implication of our

research. Regulators may use their financial stability authority under Section 165 of the Dodd-

Frank Act to implement the recently introduced climate-focused macro-prudential legislation

(Gelzinis and Steele, 2019). This action would be compatible with the Fed conducting climate

change stress tests taking into account physical risks. Such policies are currently being

implemented by the Bank of England, the Dutch National Bank, and the European Systemic Risk

Board. Regulators may also integrate climate risk into the supervisory framework by setting higher

risk-weighted bank capital requirements for assets that are sensitive to the price of carbon.

6. Conclusions
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This research has provided evidence that CO2 emissions in the U.S. have a robust impact on the

economy's systemic risk in the following year. The present findings are supportive of the physical

risk effect of increases in CO2 emissions, and suggest that, if CO2 emissions in 2020 increase, the

U.S. systemic risk will increase in November and December 2021. As systemic risk affects the

macro-economy in a detrimental manner, this evidence indicates that policy makers have a 10-

month period to act in order to control for this negative CO2-driven impact on systemic risk.

We further illustrate that the impact of CO2 emissions on systemic risk is channeled through bank

profitability. We show that there is a negative effect from CO2 emissions to bank profitability and

a negative effect from bank profitability to systemic risk. Bank profitability is the recipient of a

detrimental impact of CO2 emissions, which is then transmitted on to the financial system as a

contributor to systemic risk. This implies that policy makers, in order to control the effects of CO2

emissions on systemic risk, may act to control the effect of CO2 emissions on bank profitability.

Policies, which are compatible with this objective, include federal or state insurance support to

banks and measures of integrating climate change into the regulatory framework.
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Figure 2: Graphical presentation of the variables
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Figure 3A: Impulse response of the 12 monthly systemic risk variables to CO2 emissions
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Figure 3B: Accumulated impulse response of the 12 monthly systemic risk variables to CO2

emissions

-.01

.00

.01

.02

.03

2 4 6 8 10 12

Accumulated Response of CATFIN_1 to CO2_EMISSIONSAccumulated Response of CATFIN_1 to CO2_EMISSIONS

-.01

.00

.01

.02

.03

2 4 6 8 10 12

Accumulated Response of CATFIN_2 to CO2_EMISSIONSAccumulated Response of CATFIN_2 to CO2_EMISSIONS

.00

.01

.02

.03

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_3 to CO2_EMISSIONSAccumulated Response of CATFIN_3 to CO2_EMISSIONS

.00

.01

.02

.03

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_4 to CO2_EMISSIONSAccumulated Response of CATFIN_4 to CO2_EMISSIONS

-.01

.00

.01

.02

.03

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_5 to CO2_EMISSIONSAccumulated Response of CATFIN_5 to CO2_EMISSIONS

-.01

.00

.01

.02

.03

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_6 to CO2_EMISSIONSAccumulated Response of CATFIN_6 to CO2_EMISSIONS

.00

.01

.02

.03

2 4 6 8 10 12

Accumulated Response of CATFIN_7 to CO2_EMISSIONSAccumulated Response of CATFIN_7 to CO2_EMISSIONS

-.01

.00

.01

.02

.03

.04

.05

2 4 6 8 10 12

Accumulated Response of CATFIN_8 to CO2_EMISSIONSAccumulated Response of CATFIN_8 to CO2_EMISSIONS

.00

.02

.04

.06

2 4 6 8 10 12

Accumulated Response of CATFIN_9 to CO2_EMISSIONSAccumulated Response of CATFIN_9 to CO2_EMISSIONS

.00

.02

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_10 to CO2_EMISSIONSAccumulated Response of CATFIN_10 to CO2_EMISSIONS

.00

.02

.04

2 4 6 8 10 12

Accumulated Response of CATFIN_11 to CO2_EMISSIONSAccumulated Response of CATFIN_11 to CO2_EMISSIONS

.00

.02

.04

.06

.08

2 4 6 8 10 12

Accumulated Response of CATFIN_12 to CO2_EMISSION SAccumulated Response of CATFIN_12 to CO2_EMISSION S

Accumulated Response to Cholesky One S.D. (d.f. adjusted) Innovations ± 2 S.E.Accumulated Response to Cholesky One S.D. (d.f. adjusted) Innovations ± 2 S.E.



19

Figure 4A: Impulse response of the 4 quarterly systemic risk variables to CO2 emissions
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Figure 4B: Accumulated impulse response of the 4 quarterly systemic risk variables to CO2

emissions
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Figure 5: Overall and insured losses in the U.S., 1980-2017

Source: © 2018 Munich Re, Geo Risks Research, NatCatSERVICE. As of January 2018.,

https://www.iii.org/graph-archive/218221
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Table 1: Descriptive statistics

Variable Mean
Standard
deviation ADF

CATFIN 0.26 0.11 -5.71 (2)

Percentage change in CO2 emissions
('Δc') 0.003 0.03 -5.56 (0)

Real GDP growth
('Real GDP') 2.75 2.00 -5.12 (0)

Change in bank ROE profitability
('ΔROE') -0.0002 0.02 -5.97 (5)

Change in bank ROA profitability
('ΔROA') 0.0002 0.15 -5.02 (3)

Notes:

1. ADF stands for the augmented Dickey Fuller unit root test. The number in parenthesis next to
the ADF test statistic is the number of augmentation terms in the Dickey Fuller regression based
on the SIC criterion. The 5% critical value of the ADF test is -2.877. Based on this, all series are
stationary at the 5% level.
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Table 2: MF-VAR model, U-MIDAS estimation: Monthly systemic risk (CATFIN) and
annual changes in CO2 emissions (Δc)

CATFIN_1 CATFIN_2 CATFIN_3 CATFIN_4 CATFIN_5 CATFIN_6 CATFIN_7 CATFIN_8 CATFIN_9 CATFIN_10 CATFIN_11 CATFIN_12 Δc 

CATFIN_1(-1) -0.039 -0.385 -0.264 -0.289 0.021 0.045 -0.287 -0.328 -0.371 -0.535 -0.238 -0.319 -0.050

[-0.173] [-2.031] [-1.291] [-1.508] [ 0.143] [ 0.210] [-1.363] [-1.325] [-1.407] [-1.763] [-0.973] [-1.178] [-0.915]

CATFIN_2(-1) -0.055 0.163 0.347 0.271 0.286 0.351 0.494 * 0.520 0.310 0.134 0.324 0.296 0.114

[-0.214] [ 0.763] [ 1.500] [ 1.252] [ 1.697] [ 1.452] [ 2.071] [ 1.860] [ 1.042] [ 0.391] [ 1.172] [ 0.965] [ 1.848]

CATFIN_3(-1) 0.185 0.150 -0.155 0.154 0.018 0.207 0.185 0.212 0.469 0.284 0.259 0.455 -0.064

[ 0.835] [ 0.819] [-0.780] [ 0.829] [ 0.125] [ 1.000] [ 0.904] [ 0.886] [ 1.836] [ 0.967] [ 1.093] [ 1.730] [-1.212]

CATFIN_4(-1) -0.468 -0.383 -0.450 -0.429 -0.267 -0.411 -0.353 -0.220 -0.527 -0.765 * -0.854 * -1.060 * -0.001

[-1.768] [-1.744] [-1.899] [-1.930] [-1.533] [-1.657] [-1.444] [-0.767] [-1.724] [-2.178] [-3.009] [-3.370] [-0.022]

CATFIN_5(-1) -0.167 0.065 0.405 0.257 -0.209 -0.118 -0.335 -0.130 -0.186 0.334 0.046 0.413 0.052

[-0.555] [ 0.259] [ 1.497] [ 1.012] [-1.060] [-0.417] [-1.201] [-0.398] [-0.534] [ 0.833] [ 0.145] [ 1.152] [ 0.723]

CATFIN_6(-1) 0.121 -0.049 -0.227 -0.231 -0.265 -0.333 -0.146 0.117 -0.351 -0.352 -0.390 -0.826 0.025

[ 0.413] [-0.202] [-0.864] [-0.936] [-1.387] [-1.213] [-0.540] [ 0.369] [-1.036] [-0.905] [-1.240] [-2.370] [ 0.367]

CATFIN_7(-1) 0.174 0.092 0.171 0.206 -0.021 0.541 * 0.149 0.037 0.605 * 0.554 0.772 0.588 -0.029

[ 0.682] [ 0.433] [ 0.749] [ 0.960] [-0.127] [ 2.258] [ 0.634] [ 0.136] [ 2.050] [ 1.634] [ 2.815] [ 1.936] [-0.489]

CATFIN_8(-1) -0.357 -0.220 -0.132 0.009 0.340 * 0.126 0.006 0.248 0.302 -0.194 0.080 0.075 -0.011

[-1.616] [-1.199] [-0.668] [ 0.050] [ 2.358] [ 0.608] [ 0.034] [ 1.036] [ 1.182] [-0.663] [ 0.338] [ 0.289] [-0.210]

CATFIN_9(-1) 0.372 0.342 0.034 0.043 0.092 -0.172 0.157 -0.449 -0.489 -0.047 -0.451 0.038 -0.010

[ 1.437] [ 1.593] [ 0.150] [ 0.198] [ 0.549] [-0.710] [ 0.656] [-1.604] [-1.636] [-0.137] [-1.626] [ 0.124] [-0.161]

CATFIN_10(-1) -0.081 0.026 0.073 -0.069 0.162 0.058 -0.120 0.001 -0.019 0.151 0.262 -0.072 0.038

[-0.416] [ 0.165] [ 0.418] [-0.418] [ 1.265] [ 0.316] [-0.666] [ 0.007] [-0.084] [ 0.579] [ 1.247] [-0.310] [ 0.829]

CATFIN_11(-1) 0.418 0.541 * 0.168 0.468 * 0.463 * 0.660 * 0.203 0.209 0.724 * 0.560 0.772 * 0.454 -0.090

[ 1.693] [ 2.640] [ 0.760] [ 2.257] [ 2.875] [ 2.852] [ 0.890] [ 0.784] [ 2.541] [ 1.710] [ 2.919] [ 1.550] [-1.524]

CATFIN_12(-1) 0.115 -0.021 0.360 0.067 -0.075 -0.093 0.288 0.432 0.231 0.240 0.045 0.426 0.059

[ 0.501] [-0.111] [ 1.744] [ 0.349] [-0.497] [-0.434] [ 1.354] [ 1.728] [ 0.867] [ 0.783] [ 0.182] [ 1.556] [ 1.076]

Δc(-1) 0.261 -0.124 0.789 0.890 0.569 0.705 0.451 0.284 1.101 0.617 1.189 * 2.095 * 0.038

[ 0.468] [-0.267] [ 1.577] [ 1.900] [ 1.562] [ 1.348] [ 0.875] [ 0.471] [ 1.708] [ 0.832] [ 1.987] [ 3.158] [ 0.284]

C 0.179 * 0.158 * 0.153 * 0.098 * 0.077 * 0.042 0.196 * 0.078 0.074 0.169 * 0.111 0.173 * -0.037 *

[ 3.124] [ 3.308] [ 2.977] [ 2.039] [ 2.070] [ 0.784] [ 3.703] [ 1.260] [ 1.124] [ 2.218] [ 1.814] [ 2.533] [-2.715]

REAL_GDP -0.011 -0.009 -0.009 0.002 0.005 -0.008 -0.007 -0.003 -0.007 -0.004 -0.011 -0.017 0.010 *

[-1.489] [-1.510] [-1.365] [ 0.386] [ 1.017] [-1.218] [-0.987] [-0.367] [-0.859] [-0.443] [-1.384] [-1.940] [ 5.741]

R-squared 0.609 0.711 0.579 0.570 0.728 0.691 0.499 0.553 0.644 0.529 0.685 0.658 0.691

Adj. R-squared 0.420 0.571 0.376 0.363 0.598 0.542 0.257 0.338 0.472 0.301 0.532 0.493 0.541
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Notes:

1. REAL_GDP stands for real GDP growth.

2. * denotes statistical significance at the 5% level.

3. Δc stands for annual percentage changes of CO2 emissions

4. CATFIN_1 is the variable for the first month of the year, CATFIN_2 is for the second month, ... and

CATFIN_12 is for the twelve-th month In line with the discussion of the MF-VAR model in (5), CATFIN_1,

CATFIN_2, ... CATFIN_12 appear as endogenous variables along with Δc. Further, CATFIN_1(-1) refers to

the first month of the previous (lagged, denoted by '(-1)') year. For example, if the reference year is 2000,

'CATFIN_1' refers to January 2000, 'CATFIN_2' to February 2000, ..., and 'CATFIN_12' to December 2000.

Furthermore, 'CATFIN_1(-1)' refers to January 1999, 'CATFIN_2(-1)' to February 1999, etc.
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Table 3: Granger causality tests from annual CO2 emission changes to the systemic risk of
each month of the subsequent year

Causality from: Lagged changes in CO2 emissions, Δc(-1)

Causality to: Chi-sq df Prob.

CATFIN_1 0.22 1 0.639

CATFIN_2 0.07 1 0.789

CATFIN_3 2.49 1 0.114

CATFIN_4 3.60 1 0.058

CATFIN_5 2.44 1 0.118

CATFIN_6 1.82 1 0.177

CATFIN_7 0.76 1 0.381

CATFIN_8 0.22 1 0.637

CATFIN_9 2.92 1 0.087

CATFIN_10 0.69 1 0.405

CATFIN_11 3.95 1 0.047 *

CATFIN_12 9.98 1 0.001 *

Note: * denotes statistical significance at the 5% level.
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Table 4: MF-VAR model, U-MIDAS estimation: Quarterly systemic risk (CATFIN) and
annual changes in CO2 emissions, Δc

CATFIN_1 CATFIN_2 CATFIN_3 CATFIN_4 Δc

CATFIN_1(-1) -0.153 0.302 0.413 0.231 -0.025
[-0.927] [ 1.512] [ 1.795] [ 0.945] [-0.589]

CATFIN_2(-1) 0.044 0.242 0.029 -0.297 0.012
[ 0.237] [ 1.067] [ 0.113] [-1.072] [ 0.257]

CATFIN_3(-1) 0.017 -0.054 -0.189 0.130 -0.007
[ 0.099] [-0.248] [-0.752] [ 0.487] [-0.156]

CATFIN_4(-1) 0.379 0.213 0.448 * 0.421 0.027
[ 2.605] [ 1.211] [ 2.210] [ 1.952] [ 0.732]

Δc(-1) 0.649 -0.039 0.891 1.694 * -0.000
[ 1.521] [-0.077] [ 1.496] [ 2.675] [-0.004]

C 0.176 * 0.091 0.096 0.177 * -0.031 *
[ 3.888] [ 1.669] [ 1.514] [ 2.627] [-2.720]

REAL_GDP -0.008 -0.007 -0.007 -0.013 0.011 *
[-1.292] [-0.967] [-0.789] [-1.360] [ 6.884]

R-squared 0.407 0.418 0.413 0.398 0.594
Adj. R-squared 0.311 0.323 0.318 0.300 0.529

Notes: 1. REAL_GDP stands for real GDP growth.

2. * denotes statistical significance at the 5% level.

3. CATFIN_1 refers to the first quarter of the year, CATFIN_2 to the second quarter, CATFIN_3 to

the third, and CATFIN_4 to the fourth. CATFIN_1(-1) is the first quarter of the previous (lagged,

denoted by '(-1)') year.

4. Δc stands for annual percentage changes of CO2 emissions.
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Table 5: MF-VAR model, U-MIDAS estimation: Average annual systemic risk (CATFIN)
and annual changes in CO2 emissions

Δc CATFIN_Annual_average

Δc(-1) 0.024 0.670 *
[ 0.239] [ 1.960]

CATFIN_Annual_average(-1) 0.035 0.632
[ 0.995] [ 5.196]

C -0.038 0.113
[-3.200] [ 2.803]

REAL_GDP 0.011 -0.008
[ 7.312] [-1.545]

R-squared 0.594 0.494
Adj. R-squared 0.563 0.456

Notes: See notes in Tables 2, and 4.
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Table 6: MF-VAR model, Bayesian estimation: Quarterly systemic risk (CATFIN) and
annual changes in CO2 emissions

CATFIN_1 CATFIN_2 CATFIN_3 CATFIN_4 Δc

CATFIN_1(-1) -0.156 0.300 0.408 0.224 -0.024
(0.151) (0.182) (0.210) (0.225) (0.039)

CATFIN_2(-1) 0.065 0.251 0.046 -0.270 0.012
(0.169) (0.203) (0.234) (0.251) (0.045)

CATFIN_3(-1) -0.001 -0.053 -0.196 0.108 -0.006
(0.156) (0.189) (0.219) (0.236) (0.043)

CATFIN_4(-1) 0.372 0.195 0.432 0.411 0.026
(0.122) (0.152) (0.177) (0.190) (0.034)

Δc(-1) 0.264 -0.285 0.559 1.275 -0.007
(0.250) (0.350) (0.422) (0.471) (0.095)

C 0.177 0.094 0.099 0.179 -0.031
(0.042) (0.051) (0.059) (0.063) (0.011)

REAL_GDP -0.007 -0.007 -0.006 -0.012 0.011
(0.006) (0.007) (0.008) (0.009) (0.001)

R-squared 0.393 0.413 0.408 0.390 0.594
Adj. R-squared 0.407 0.427 0.421 0.404 0.603

Notes: 1. REAL_GDP stands for real GDP growth.

2. * denotes statistical significance at the 5% level.

3. CATFIN_1 refers to the first quarter of the year, CATFIN_2 to the second quarter, CATFIN_3 to

the third, and CATFIN_4 to the fourth. CATFIN_1(-1) is the first quarter of the previous (lagged,

denoted by '(-1)') year.

4. Δc stands for annual percentage changes of CO2 emissions.
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Table 7: MF-VAR model: Quarterly systemic risk (CATFIN), bank profitability changes
(ΔROE), and annual changes in CO2 emissions (Δc)

ΔROE_1 ΔROE_2 ΔROE_3 ΔROE_4 CATFIN_1 CATFIN_2 CATFIN_3 CATFIN_4 Δc

ΔROE_1(-1) 0.331 * 0.046 -0.405 * -0.106 -0.579 1.818 * 1.635 1.722 0.330
[ 3.574] [ 0.128] [-2.844] [-1.482] [-0.871] [ 2.348] [ 1.453] [ 1.414] [ 1.811]

ΔROE_2(-1) -0.720 * 0.176 -0.202 0.045 -0.485 -1.504 * -0.993 -1.046 -0.490 *
[-8.283] [ 0.523] [-1.511] [ 0.678] [-0.778] [-2.0706] [-0.940] [-0.915] [-2.863]

ΔROE_3(-1) -0.60 *7 0.084 -0.023 0.073 0.282 -2.337 -2.151 -2.101 -0.831 *
[-3.648] [ 0.131] [-0.091] [ 0.566] [ 0.235] [-1.679] [-1.063] [-0.959] [-2.532]

ΔROE_4(-1) 0.018 1.797 -0.270 0.444 -7.059 * -11.736 * -9.802 * -11.374 * -0.265
[ 0.051] [ 1.298] [-0.493] [ 1.608] [-2.759] [-3.942] [-2.264] [-2.428] [-0.378]

CATFIN_1(-1) 0.022 -0.035 0.006 0.023 -0.073 0.383 0.338 0.077 0.034
[ 0.855] [-0.336] [ 0.155] [ 1.122] [-0.383] [ 1.708] [ 1.037] [ 0.219] [ 0.657]

CATFIN_2(-1) 0.076 * 0.026 0.083* 0.026 0.270 0.141 -0.017 -0.425 -0.001

[ 2.936] [ 0.262] [ 2.082] [ 1.327] [ 1.445] [ 0.647] [-0.054] [-1.247] [-0.024]

CATFIN_3(-1) -0.027 -0.073 0.018 -0.004 -0.093 -0.297 -0.319 0.152 -0.067
[-1.048] [-0.716] [ 0.462] [-0.198] [-0.490] [-1.343] [-0.992] [ 0.438] [-1.290]

CATFIN_4(-1) 0.014 0.088 -0.062 -0.001 0.232 0.028 0.250 0.172 0.010
[ 0.653] [ 1.037] [-1.854] [-0.100] [ 1.469] [ 0.154] [ 0.934] [ 0.593] [ 0.243]

Δc(-1) -0.297 * -0.179 0.057 -0.032 1.338 * -0.336 1.606 2.444* -0.263

[-3.747] [-0.582] [ 0.468] [-0.526] [ 2.349] [-0.508] [ 1.665] [ 2.342] [-1.681]

C -0.034 * 0.010 -0.018 -0.019 * 0.063 0.105 0.128 0.183 -0.029

[-4.502] [ 0.363] [-1.606] [-3.222] [ 1.151] [ 1.654] [ 1.384] [ 1.825] [-1.928]

REAL_GDP 0.005 * -0.004 0.003 0.002 * 0.018 0.008 0.000 0.009 0.013 *
[ 3.637] [-0.808] [ 1.621] [ 2.106] [ 1.701] [ 0.669] [ 0.028] [ 0.487] [ 4.448]

R-squared 0.897 0.124 0.473 0.488 0.668 0.755 0.606 0.582 0.678
Adj. R-squared 0.866 -0.140 0.314 0.334 0.568 0.681 0.487 0.456 0.580

Notes: 1. REAL_GDP stands for real GDP growth. ΔROE stands for the change in bank profitability 

(Return on Equity).

2. * denotes statistical significance at the 5% level.

3. CATFIN_1 refers to the first quarter of the year, CATFIN_2 to the second quarter, CATFIN_3 to

the third, and CATFIN_4 to the fourth. CATFIN_1(-1) is the first quarter of the previous (lagged,

denoted by '(-1)') year.

4. Δc stands for annual percentage changes of CO2 emissions.
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Table 8: MF-VAR model: Quarterly systemic risk (CATFIN), bank profitability changes
(ΔROA), and annual changes in CO2 emissions (Δc)

ΔROA_1 ΔROA_2 ΔROA_3 ΔROA_4 CATFIN_1 CATFIN_2 CATFIN_3 CATFIN_4 Δc 

ΔROA_1(-1) 0.301 * 0.094 -0.387 * -0.095 -0.051 0.333 * 0.339 * 0.313 0.041

[ 2.335] [ 0.284] [-3.003] [-1.037] [-0.568] [ 3.197] [ 2.203] [ 1.844] [ 1.523]

ΔROA_2(-1) -0.671 * 0.103 -0.186 0.017 -0.080 -0.175 -0.113 -0.088 -0.062 *
[-5.503] [ 0.327] [-1.525] [ 0.199] [-0.950] [-1.776] [-0.801] [-0.554] [-2.448]

ΔROA_3(-1) -0.574 * 0.115 -0.061 0.015 -0.067 -0.439 * -0.418 -0.369 -0.113 *
[-2.413] [ 0.188] [-0.256] [ 0.093] [-0.406] [-2.284] [-1.515] [-1.180] [-2.291]

ΔROA_4(-1) 0.280 1.029 0.111 0.569 * -0.810 * -1.256 * -1.151 * -1.240 * 0.010
[ 0.757] [ 1.074] [ 0.300] [ 2.156] [-3.143] [-4.193] [-2.677] [-2.543] [ 0.134]

CATFIN_1(-1) 0.404 -0.197 0.082 0.244 -0.074 0.383 0.327 0.075 0.036

[ 1.549] [-0.293] [ 0.318] [ 1.315] [-0.409] [ 1.819] [ 1.082] [ 0.220] [ 0.668]

CATFIN_2(-1) 0.780 * 0.132 0.776 * 0.212 0.312 0.040 -0.135 -0.531 -0.003
[ 2.828] [ 0.185] [ 2.815] [ 1.081] [ 1.630] [ 0.182] [-0.423] [-1.466] [-0.060]

CATFIN_3(-1) -0.271 -0.530 0.095 -0.016 -0.125 -0.308 -0.331 0.144 -0.063
[-1.042] [-0.789] [ 0.367] [-0.088] [-0.692] [-1.467] [-1.100] [ 0.422] [-1.166]

CATFIN_4(-1) 0.048 0.545 -0.484 * -0.007 0.233 0.175 0.380 0.324 0.026
[ 0.225] [ 0.976] [-2.243] [-0.047] [ 1.557] [ 1.006] [ 1.517] [ 1.141] [ 0.591]

Δc(-1) -2.742 * -1.769 0.318 -0.466 1.506 * -0.235 1.663 2.548 * -0.261

[-3.482] [-0.869] [ 0.404] [-0.831] [ 2.751] [-0.370] [ 1.820] [ 2.460] [-1.587]

C -0.311 * 0.056 -0.144 -0.1782 * 0.049 0.085 0.110 0.163 -0.031 *
[-4.128] [ 0.287] [-1.919] [-3.317] [ 0.950] [ 1.401] [ 1.267] [ 1.650] [-2.019]

REAL_GDP 0.043 * -0.023 0.025 0.022 * 0.022 * 0.011 0.004 0.012 0.013 *
[ 2.785] [-0.586] [ 1.628] [ 2.051] [ 2.117] [ 0.921] [ 0.271] [ 0.615] [ 4.085]

R-squared 0.829 0.117 0.503 0.525 0.702 0.780 0.655 0.599 0.654
Adj. R-squared 0.777 -0.150 0.352 0.382 0.611 0.714 0.551 0.478 0.549

Notes: 1. REAL_GDP stands for real GDP growth. ΔROA stands for the change in bank profitability 

(Return on Assets)

2. * denotes statistical significance at the 5% level.

3. CATFIN_1 refers to the first quarter of the year, CATFIN_2 to the second quarter, CATFIN_3 to

the third, and CATFIN_4 to the fourth. CATFIN_1(-1) is the first quarter of the previous (lagged,

denoted by '(-1)') year.

4. Δc stands for annual percentage changes of CO2 emissions.
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Table 9: Overall losses vs insured losses (US $ m): Summary of 2017 major weather-related

loss events in the U.S.

No Date Loss event Overall losses
(US$ m)

Insured losses
(US$ m)

1 28/02 - 2/3 Tornadoes,
severe storms

1900 1400

2 6/3 - 9/3 Severe storms,
tornadoes

2200 1600

3 25/3 - 28/3 Hailstorms,
severe storms

2700 2000

4 8/5 - 11/5 Hailstorms,
severe storms

3100 2500

5 9/6 - 12/6 Severe storms 2000 1500

6 27/6 - 29/6 Severe storms,
hail, tornado

1400 1100

7 8/10 - 20/10 Wildfires 13000 9800

8 4/12 - 31/12 Wildfire 2200 1700

Source: TOPICS Geo Natural Catastrophes, 2017, page 64-65.
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