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models in discrete time or continuous time by adopting a Luenberger-type
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indicators are similar to the well-known Solow residuals, allowing us to make an
analogy between a firm’s behaviour in a microeconomic setting and a country’s
behaviour in a macroeconomic setting. Secondly, we demonstrate that the
properties of the paths are similar in both frameworks. Finally, we develop a
new class of distance functions, the exponential distance, which facilitates the
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1 Introduction

1957 is a landmark for the understanding of productivity. On the one hand, Solow
(1957) proposed the first macroeconomic framework to evaluate the total factor pro-
ductivity indices from a neoclassical aggregate production function. Solow’s research
initiated modern growth accounting research that will lead to distinguish ‘separate
contributions of technological change, capital accummulation, education and so forth
in raising per capita income’(Allen, 1991, p 203). It is now well-established that
productivity growth has two determinants: variation of technology effi ciency (the so-
called ‘productivity gains’) and technological changes linked to innovation. On the
other hand, Farrell (1957) proposed various measurements of productive effi ciency at
the firm level by using the concept of distance function. A firm is said to be technic-
ally ineffi cient if it can produce the same output with an equiproportional reduction
in the use of all inputs. Procedures to measure ineffi ciency have since flourished in
the literature.

The aim of this paper is to unify both approaches in simple macrodynamical
frameworks. Our paper shows the analogy between technical effi ciencies relative to
production sets and the ‘standard’theory of productivity measurement derived from
Solow. Indeed, technical effi ciency in Farrell’s sense is the total factor productivity
by a different name. Solow’s productivity growth is the total factor productivity with
a shift in technology. This correspondence is not new. Indeed, as noted by ten Raa
and Mohnen (2002, p. 111), ‘productivity is essentially the output-input ratop and
therefore productivity growth the residual between output growth and input growth’
in both approaches. Introducing the distance function concept in macrodynamics has
two main advantages. On the one hand, estimating total factor productivity growth
does not require the specification of the production function. On the other hand,
evaluating production ineffi ciencies and therefore identifying possible aggregate gains
become possible.

To illustrate the above, let us assume that a firm is effi cient at a given time
period. If the set of production possibilities is increasing in time, then it may not
remain effi cient relative to the technical effi ciency frontier at a later time period. As
it is in the firm’s interest to maintain effi ciency, the firm has to change size between
these two time periods. It does so by proceeding to a minimal transformation of
factors and products. This ‘ideal’change between two successive time periods can
be evaluated by using the procedures derived from Farrell. The firm’s dynamical
behavior can then be extrapolated by recurrence, although it remains dependent on
its initial condition. We can make use of similar arguments in the case a country in
a macrodynamical framework.

In this paper, we make the analogy between the Farrell and Solow productivity
concepts in simple Solow models. This allows us to propose an alternative way to
measure the performance of decision units, including countries, for a given exogen-
ous technological progress. The basic correspondence is presented by Del Gatto, Di
Liberto and Petraglia (2011, pp. 962-974). Our paper does not explain the origin of
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the technological progress. Our (macroeconomic) models do not have microeconomic
foundations. Specifically, we consider simple Solow-type models in which the tech-
nological progress is exogenous and the technical effi ciency frontier is not specified.
The dynamical analysis evaluates the impact of a firm’s size change on productivity
over a period of time, by simply actualizing observations over time. This enables us
to treat these observations as cross-sectional data to estimate the ‘actualized’frontier
by envelopment. Although our concept of optimal paths is close to that derived in
the traditional macroeconomic approach, it rests on the distance concept developed
by Luenberger (1995) and Chambers, Chung and Färe (1996 and 1998). In other
words, we integrate some essential and well-known tools of production theory in
macrodynamics.

The paper is organized as follows. Section 2 collates the basic assumptions and
definitions. We determine the dynamical path according to the rate of growth of
the technological progress in discrete time in Section 3 and in continuous time in
Section 4. Section 5 proposes a new class of distance function, the exponential dis-
tance, which facilitates the productivity analysis in macrodynamics, the exponential
distance function. Section 6 concludes.

2 Technology, technological progress and distance
function

Firstly, this section introduces the assumptions on the production possibility set.
Secondly, it presents the methods to evaluate effi ciency changes relative to production
frontiers, including the indicators used throughout the paper.

2.1 Assumptions on production technology

For x, u ∈ Rn+, x ≤ u⇔ xi ≤ ui, ∀ i ∈ {1, ..., n}. A production technology transforms
input vectors x = (x1, ..., xn) ∈ Rn+ into output vectors y = (y1, ..., yp) ∈ Rp+. This
production technology can be characterized by the input correspondence L : Rp+ −→
2R

n
+ or the output correspondence P : Rn+ −→ 2R

p
+ . For all y ∈ Rp+, L(y) is the set of

all input vectors that yield at least y. For all x ∈ Rn+, P (x) is the set of all output
vectors obtainable from a given input vector x. The graph of the technology T can
be defined either from L or P by:

T =
{

(x, y) ∈ Rn+p
+ : x ∈ L(y)

}
=
{

(x, y) ∈ Rn+p
+ : y ∈ P (x)

}
.

As Färe, Grosskopf and Lovell (1985) and Shephard (1974), we assume that the
technology representation satisfies the standard axioms of production:
T1: (0, 0) ∈ T ; (0, y) ∈ T ⇒ y = 0.
T2: T (x) = {(u, y) ∈ T : u ≤ x} is a bounded set ∀x ∈ Rn+.
T3: ∀ (u, v) ∈ Rn+p

+ ; (x, y) ∈ T ∧ (−u, v) ≤ (−x, y)⇒ (u, v) ∈ T.
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T4: T is a closed set.

Axiom T1 states that outputs cannot be produced without inputs. Although this
axiom is realistic, it is not compulsory to maintain our results. Axiom T2 postulates
that a finite input vector cannot lead to an infinite output vector. Strong disposab-
ility of both inputs and outputs is imposed by Axiom T3. Axiom T4 is a required
condition to identify the set of effi cient vectors of a subset of the frontier. To Axioms
T1-T4 can be added Axiom T5 postulating the convexity of the production set, often
used in empirical works (see for instance Charnes, Cooper and Rhodes (1978) and
Banker, Charnes and Cooper (1984)).

T5: T is a convex set.

In what follows, we will assume that the technology T satisfies the axioms T1-T5,
unless stated otherwise.

2.2 Technical effi ciencies and distance functions

Any difference between actual production set and effi cient set reveals effi cient gains
possibilities. In practice, these are evaluated by using distance functions that meas-
ure technical effi ciencies relative to technology subsets. This paper considers the
proportional distance function based on simultaneous proportionate changes in in-
puts and outputs. Initiated by Briec (1997), this distance function is closely related
to the directional distance function due to Chambers, Chung and Färe (1996,1998).1

This specification has the advantage to take into account various weightings on inputs
and outputs. It can be justified in a macroeconomic framework as it could measure
changes in per capita output relative to changes in per capita labor for instance.

Definition 2.2.1 The map D∝T : Rn+p
+ × [0, 1]n+p −→ R ∪ {−∞,+∞} defined by

D∝T (x, y;α, β) = max {δ : (x− δα� x, y + δβ � y) ∈ T} (2.1)

is called Proportional Distance Function, where � denotes the coordinate-wise product
defined by γ � z = (γ1z1, ..., γdzd) for all γ, z ∈ Rd.

Notice that, for all (α, β) ∈ [0, 1]n+p, this distance function is independent of the
units of measurement chosen for the production technology. Equivalently, this means
that it satisfies the commensurability condition (see Russell (1987)).

1Russell and Schworm (2011) mention some differences between these distance functions.
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Figure 1: Proportional distance function.

Figure 1 illustrates the concept of proportional distance function in a two-dimension
diagram where α � x = αx and β � y = βy with α > 0 and β > 0. More pre-
cisely, the proportional distance D∝T : R2

+ × [0, 1]2 −→ R ∪ {−∞,+∞} is defined by
D∝T (x, y;α, β) = max{δ : (x− δα x, y + δβ y) ∈ T}. The coordinates of the optimal
projection point (x?, y?) are (x − αδ?x, y + βδ?y) where δ? = D∝T (x, y;α, β), from
which the following proportional equality is deduced

x− x?
αx

=
y? − y
βy

. (2.2)

Equality 2.2 indicates the necessary proportional changes in input and output in
order to make the input-output vector (x, y) effi cient.

From Definition 2.2.1, we can retrieve the two well-known Farrell measures of
technical effi ciency. The Farrell input measure of technical effi ciency Ei : Rn+p

+ −→
R+ ∪ {+∞} is defined by

Ei(x, y) = inf{λ > 0 : λx ∈ L(y)} (2.3)

The Farrell output measure of technical effi ciency Eo : Rn+p
+ −→ R+∪{−∞,+∞}

is defined by

Eo(x, y) = sup{θ > 0 : θy ∈ P (x)}. (2.4)

In addition, if we set α = 11n and β = 0, we have D∝T (x, y; 11n, 0) = 1− Ei(x, y).
If we set α = 0 and β = 11n, we have D∝T (x, y; 0, 11n) = Eo(x, y)− 1.

To measure technical effi ciency in simple macrodynamical frameworks with exo-
genous growth, let us give an intertemporal dimension to our framework (cf. Defin-
ition 2.2.3) by from the subset of the frontier T (cf. Definition 2.2.2).
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Definition 2.2.2 The subset

∂∝α,β(T ) =
{

(x, y) ∈ T : δ > 0 =⇒ (x− δα� x, y + δβ � y) /∈ T
}

(2.5)

is called the oriented Graph-Isoquant of the production set T .

From Definition 2.2.2, we deduce

D∝T (x, y;α, β) = 0⇔ (x, y) ∈ ∂∝α,β(T ). (2.6)

In other words, any input-output vector on the effi ciency frontier, i.e. the
oriented-graph isoquant, has a null distance.

Definition 2.2.3 The set of production possibilities T (t) for each time period t is
defined by

T (t) =
{

(x(t), y(t)) ∈ Rn+p
+ : (x(t), y(t)) is possible at time period t

}
.

In what follows, we will denote D∝T (t)

(
x(t), y(t);α, β

)
, the proportional distance

function relative to the technology T (t) at time period t and ∂∝α,β(T (t)), the Graph-
Isoquant of T (t) at time period t. The input-output vector (x(t), y(t)) can also be
called the production unit. We will assume that T (t) satisfies Axioms T1-T5 at each
time period t, unless stated otherwise.

2.3 Technological progress and proportional Luenberger in-
dicator

In this sub-section, we define the proportional Luenberger indicator,2 our productiv-
ity indicator based on the proportional distance function. This indicator provides a
flexible tool to account for both input contractions and output improvements when
measuring effi ciency (see Boussemart, Briec, Kerstens and Poutineau (2003, p. 393)
for more information on Luenberger indexes and indicators).
In our framework, the set of production possibilities, defining the technological

constraints supported by the producer, is assumed to increase in time for a given
amount of input. In other words, if the producer adopts a given size in the market
at a given time period, she will be able to do so again at a later time period. This
is gathered in the following assumption.

Assumption (Growth of the set of production possibilities)

∀ t, s ≥ 0 if s ≥ t then T (t) ⊂ T (s).

2Our productivity indicator was first introduced by Luenberger (1992a and 1992b) and sub-
sequently developed by Chambers, Färe and Grosskopf (1996).
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The proportional Luenberger indicator is equal to

Lt,t+1

(
x(t), y(t), x(t+ 1), y(t+ 1);α, β

)
=

1

2

[(
D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t+ 1), y(t+ 1);α, β

))
(2.7)

+
(
D∝T (t+1)

(
x(t), y(t);α, β

)
−D∝T (t+1)

(
x(t+ 1), y(t+ 1);α, β

))]
Indicator 2.7 is the arithmetic mean between the proportional changes in input

and output observed at time period t and those observed at time period t + 1.
This allows us to avoid an arbitrary choice between base years. For instance,
D∝T (t+1) (x(t), y(t);α, β) indicates the necessary proportional changes in inputs and
outputs for (x(t), y(t)) to be effi cient at time period t + 1. If L = 0, there are no
productivity gains. If L > 0, there are productivity gains. If L < 0, there are pro-
ductivity losses. As this Luenberger indicator evaluates the productivity change, we
denote it by PCH. The latter can be decomposed into two components: the effi ciency
change (EFCH) of the proportional distance function between the two successive
time periods and the technological change (TECH) measured by the arithmetic
mean of the last two differences. Hence, it can be expressed as:

PCHt,t+1 = EFCHt,t+1 + TECHt,t+1 (2.8)

where

EFCHt,t+1 = D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t+1)

(
x(t+ 1), y(t+ 1);α, β

)
(2.9)

and

TECHt,t+1 =
1

2

[(
D∝T (t+1)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t), y(t);α, β

))
(2.10)

+
(
D∝T (t+1)

(
x(t+ 1), y(t+ 1);α, β

)
−D∝T (t)

(
x(t+ 1), y(t+ 1);α, β

)]
Expression 2.10 does not necessitate the specification of the production function.

As well-known in the literature, the latter can be estimated from non parametric
techniques.

2.4 Example

Let us consider a Cobb-Douglas production function with constant returns to scale.
The expression of the technology at time period t is given by

T (t) =
{

(x(t), y(t)) ∈ Rn+1
+ : y(t) ≤ A(t)

n∏
i=1

xi(t)
γi
}
with γn > 0 and

n∑
i=1

γi = 1.

(2.11)
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We assume that all firms are effi cient, i.e. y(t) = A(t)
∏n

i=1 xi(t)
γi .

Let us first set α = 11n and β = 0. As D∝T (t)

(
x(t), y(t);α, β

)
= 1 − A(t)

∏n
i=1 xi(t)

γi

y(t)

and y(t) = A(t)
∏n

i=1 xi(t)
γi , it is easy to show that the proportional effi ciency change

is null, i.e. EFCHt,t+1 = 0. The technological change is equal to

TECHt,t+1 =
1

2

[A(t+ 1)− A(t)

A(t+ 1)
+
A(t+ 1)− A(t)

A(t)

]
. (2.12)

As a result, PCHt,t+1 = EFCHt,t+1 + TECHt,t+1 = TECHt,t+1. If t ' t + 1,
(2.12) becomes

TECHt,t+1 =
[A(t+ 1)− A(t)

A(t+ 1)

]
' Ȧ(t)

A(t)
' d logA(t)

dt
= d logA (2.13)

Let us simplify the notation by denoting d logA(t)
dt

by d logA.

Recall that in macrodynamical frameworks, when the production function is spe-
cified, the technological change can be deduced from the Log-transformation of (2.11).
It yields

log (A(t)) = log y(t)−
n∑
i=1

γi log (xi (t)) (2.14)

and by taking the discrete time approximation of the technological progress as
suggested by Solow, we obtain:

d log (A) = d log (y)−
n∑
i=1

γid log (xi) (2.15)

This is the so-called Solow residual. As PCHt,t+1 = TECHt,t+1 = d logA, we
can deduce that the Solow apprach and the Farrell approach are equivalent.

Let us now set α = 11n and β = 11n. The expression of the proportional distance
function becomes

D∝T (t)

(
x(t), y(t);α, β

)
= max

δ

{
δ ≥ 0; (1 + δ) y(t) ≤ A(t)

n∏
i=1

((1− δ)xi(t))γi
}
(2.16)

= max
δ

{
δ ≥ 0;

(1 + δ)

(1− δ)y(t) ≤ A(t)

n∏
i=1

(xi(t))
γi
}

(2.17)

=
A(t)

∏n
i=1 xi(t)

γi − y(t)

A(t)
∏n

i=1 xi(t)
γi + y(t)

(2.18)

from which the expressions of EFCHt,t+1, TECHt,t+1 and PCHt,t+1 can be cal-
culated.
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3 Dynamical path in discrete time

In this section, we assume that the size of an effi cient firm at time period t evolves
in such a way that it is still effi cient at the successive time period. In what follows,
the output vector at time period t + 1 always ‘realizes’its proportional distance of
the previous time period t in our framework.3 Without this assumption, the output
vector relatively effi cient to the technical effi ciency frontier at time period t would
not be automatically effi cient at time period t+1. It is only a size change that allows
the decision unit to be on the frontier at the following time period. If the output
vector systematically follows this transformation rule between two successive time
periods, then there exists an optimal dynamical behavior.

3.1 Notations and definitions

The technical effi ciency indicator of the input-output (x(t), y(t)) at time period s is
the distance D∝T (s)(x(t), y(t);α, β). This indicator depends on T (s), i.e. the produc-
tion set at a given time period.
Let T ⊂ R+. The family of production sets {T (t)}t∈T is the set of all production

sets T (t) for t ∈ T. This definition is independent on the time characteristics. It
can be used in discrete time (t ∈ N) or in continuous time (t ∈ R+). The family
{T (t)}t∈T is clearly embedded because of Axiom T1.
The dynamical path

{
(x(t), y(t))

}
t∈T of the production unit (x, y) is the set of

the successive positions of the production unit (x, y) over time.
The optimal dynamical path of a production unit always depends on the choice

of the technical effi ciency indicator. In our context, the dynamical path of a vector
is said to be ‘optimal’if its outcome is an optimal movement between two successive
time periods for a given proportional distance.

In what follows, we denote (u, v) the reference of (x, y) at time period t if

(u, v) = (x, y) +
[
D∝T (t)(x, y;α, β)

]
(−α� x, β � y). (3.1)

Definition 3.1.1 Let
{
T (tk)

}
k=0,...,m

be a family of production sets (t0 < t1 < t2 <

... < tm) satisfying Axioms T1-T5. Let
{
x(tk), y(tk)

}
k=0,...,m

be a dynamical path of
(x, y).
If at each time period tk,

(
x(tk+1), y(tk+1)

)
realizes the value of effi ciency indicator

of
(
x(tk), y(tk)

)
at time period tk+1 on the oriented-graph isoquant ∂∝α,β(T (tk+1)), then

the path
{
x(tk+1), y(tk+1)

}
k=0,...,m

is optimal.

3This assumption is not original. A similar assumption can be found in Caves, Christensen
and Diewert (1982), Färe, Grosskopf, Lindgren and Roos (1992), and Tulkens and Vanden Eeckaut
(1995).
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3.2 Time interval between two periods is regular

Definition 3.1.1 allows us to introduce the concept of regularity, commonly used in
the macroeconomics literature on technological progress.

Definition 3.2.1 An optimal path is θ-regular if there is θ > 0 such that

D∝T (tk+1)(x (tk) , y (tk) ;α, β) = θ

for all k = 0, ...,m− 1.

The regularity specified in Definition 3.2.1 is similar to that considered in growth
models. In these latter, regularity is associated with the dynamical paths character-
ising technological progress through a linear time-dependent exponential function.
The production process is of course modeled over time and the productivity meas-
ures evaluate by how much output results from a particular level of inputs. This
specification can be studied in terms of variation rate of the factors or that of the
products. This is why we need the following lemma. For all (x, y) ∈ Rn+p

+ , let us
denote I(x) = {i ∈ [n] : xi > 0} and J(y) = {j ∈ [p] : yj > 0}.
Lemma 3.2.2 Let T (t) and T (s) be two production possibility sets at time periods
t and s with s ≥ t, both satisfying Axioms T1-T4. Let (x(t), y(t)) and (x(s), y(s))
be respectively effi cient production units at time periods t and s. We have for all
(i, j) ∈ I(x(t))× J(y(t)),

D∝T (s)(x(t), y(t);α, β) =
1

αi

xi(t)− xi(s)
xi(t)

=
1

βj

yj(s)− yj(t)
yj(t)

.

Moreover,
(1) if α = 11n and β = 0, then D∝T (s)(x(t), y(t); 11n, 0) is equal to the growth rate

of the products between two successive time periods;
(2) if α = 0 and β = 11n, then D∝T (s)(x(t), y(t); 0, 11p) is equal to the decline rate

of the factors between two successive time periods;
(3) if α = 11n and β = 11n, then D∝T (s)(x(t), y(t); 11n, 11p) is equal to the decline

rate of the factors and the growth rate of the products between two successive time
periods.

Proof: We know(
x(s), y(s)

)
= (x(t), y(t)) +

[
D∝T (s)(x(t), y(t);α, β)

]
(−α� x(t), β � y(t)).

To simplify the notation, let us denote d(t, T (s)) the expression of the proportional
distance D∝T (s)(x(t), y(t);α, β). The above expression can be rewritten as

x(s) = x(t)− d(t, T (s))αix(t) and y(s) = y(t)+d(t, T (s))βjy(t) for all i and j.

The expression of the distance functions then follows.

Let α = 11n, β = 11n and (x(s), y(s)) =
(
[1− d(t, T (s))]x(t), [1 + d(t, T (s))]y(t)

)
be the reference of (x(t), y(t)) at time period s. We can easily deduce that for all
i ∈ I(x(t)) and all j ∈ J(y(t)) −xi(s)+xi(t)

xi(t)
= d(t, T (s)) and yj(s)−yj(t)

yj(t)
= d(t, T (s)).2
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3.3 Time interval between two periods is not regular

The possible irregularity of the time interval does not prevent us from constructing
a recurrent process determining the dynamics of the production set. Let A and B
be respectively the diagonal matrices of α and β.

Lemma 3.3.1 Let {T (tk)}k=0,...,m be a family of production sets (t0 < t1 < t2 < ... <
tm) satisfying Axioms T1-T4. Let {(x(tk), y(tk)}k=0,1,...,m be the optimal dynamical
path. If at each time period tk, (x(tk+1), y(tk+1)) is the reference of (x(tk), y(tk))
relatively to tk+1, then we have at time period tm

x(tm) =
[m−1∏
k=0

(I − θkA)
]
x(t0) and y(tm) =

[m−1∏
k=0

(I + θkB)
]
y(t0)

where θk = D∝T (tk+1)(x (tk) , y (tk) ;α, β) for all k = 0, ...,m− 1.

Proof: By definition of the proportional distance, we have

x(tm) = (11− θm−1α)� x(tm−1) and y(tm) = (11 + θm−1β)� y(tm−1).

Equivalently,

x(tm) = (I − θm−1A)x(tm−1) and y(tm) = (I + θm−1B)y(tm−1).

We also have

x(tm−1) = (I − θm−2A)x(tm−2) and y(tm−1) = (1 + θm−2B)y(tm−2).

By recurrence, we deduce the result.2

As the regular time interval is a special case of irregular time intervals, the fol-
lowing two corollaries can be deduced from Lemma 3.3.1.

Corollary 3.3.2 Let {T (t)}t∈N be a family of production sets satisfying Axioms T1-
T4. Let {(x(t), y(t)}t∈N be the optimal dynamical path. If {(x(t), y(t)}t∈N is θ-regular,
then we have at each time period t

x(t) = (1− θ)tx(0) and y(t) = (1 + θ)ty(0)

where θ is the decline rate of the factors and the growth rate of product between two
successive time periods.

Proof: From Lemma 3.3.1, if we consider the family of production sets {T (t)}t∈{t0,t1,.....,tm}
and an identical θ we have

x(tm) =

[
m−1∏
k=0

(I − θI)k

]
x(t0) and y(tm) =

[
m−1∏
k=0

(I + θI)k

]
y(t0).
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Setting t0 = 0, t1 = 1, etc. yields

x(t) = (1− θ)tx(0) and y(t) = (1 + θ)ty(0).2

The above expression reminds us the usual specifications in simple macrodynam-
ical frameworks. The simplest Solow framework has only one product, the output
per capita. The latter grows according to the technological progress, i.e. yt =
(1 + θ)tF (x0) where F is the aggregate production function and θ the growth rate of
the product at each time period. If we consider a slightly more sophisticated model
in which we assume a decline rate of the factors and a growth rate of the product,
the per capita output grows according to yt = (1 + θ)tF ((1− σ)tx0).
The second corollary identifies the correspondence between regularity and pro-

portionality.

Corollary 3.3.3 Let {T (t)}t∈N be a family of production sets satisfying Axioms T1-
T4. Let {x(t), y(t)}t∈N be the optimal dynamical path. If {(x(t), y(t)}t∈N is θ-regular,
the two following properties apply.

(1) For each time period t, the factors are used in the same proportion.
(2) For each time period t, the products are produced in the same proportion.

Proof:
(1) From Lemma 3.3.1, x(t) = (1 − θ)tx(0) at time period t. It then results

∀i, j ∈ I(x(0))2,
xi(t)

xj(t)
=

(1− θ)txi(0)

(1− θ)txj(0)
=
xi(0)

xj(0)
.

In other words, the proportion by which each factor is used is constant over time.
(2) The proof is similar.2

In the case of non-regular path, i.e. s 6= t, one can extend the definition of the
Luenberger indicator as:

Lt,s
(
x(t), y(t), x(s), y(s);α, β

)
=

1

2(s− t)

[(
D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(s), y(s);α, β

))
(3.2)

+
(
D∝T (s)

(
x(t), y(t);α, β

)
−D∝T (s)

(
x(s), y(s);α, β

))]
As in Section 2, we denote this proportional Luenberger indicator, PCHt,s. The

latter can be decomposed into two components: the proportional effi ciency change,
EFCHt,s, and the proportional technological change, TECHt,s. It can be expressed
as

PCHt,s = EFCHt,s + TECHt,s (3.3)

where

12



EFCHt,s =
1

(s− t)

[
D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (s)

(
x(s), y(s);α, β

)]
(3.4)

and

TECHt,s =
1

2(s− t)

[(
D∝T (s)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t), y(t);α, β

))
(3.5)

+
(
D∝T (s)

(
x(s), y(s);α, β

)
−D∝T (t)

(
x(s), y(s);α, β

))]
Corollary 3.3.4 Let {T (tk)}k=0,...,m be a family of production sets (t0 < t1 < t2 <
... < tm) satisfying Axioms T1-T4. Let {(x(tk), y(tk)}k=0,1,...,m be the optimal dynam-
ical path. If at each time period tk, (x(tk+1), y(tk+1)) is the reference of (x(tk), y(tk))
relatively to tk+1, then we have at time period tm

L
(
x(tk), y(tk), x(tk+1), y(tk+1);α, β

)
= θk

where θk = D∝T (tk+1)(x (tk) , y (tk) ;α, β) for k = 0, ...,m− 1.

We can conclude this subsection by stressing that the non-regularity assumption
has not prevented us from constructing a recurrent process. However, it is not one
parameter but several parameters which reflect the technological progress between
successive time periods.

4 Dynamical path in continuous time

Let us assume that the time interval between two time periods is infinitively small. As
we shall see, this alternative time specification does not alter too much the expression
of the proportional Luenberger indicator, its properties and the dynamical path.

4.1 Definition and notations

Definition 4.1.1 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms
T1-T4. Let {(x(t), y(t))}t≥t0 be a dynamical path of {T (t)}t≥t0. The dynamical path
of {(x(t), y(t))}t≥t0 is optimal and regular if and only if for all t ≥ t0 (x(t), y(t)) ∈
∂∝α,β(T (t)) and there exists a continuous map H : R+ → R+ such that ∀∆t > 0

(1) the Proportional Distance Function satisfies the relation

D∝T (t+∆t)(x(t), y(t);α, β) = H(∆t);

(2) the function H is right-differentiable at 0, i.e.

∃θ ∈ R+ : lim
∆t→0+

H(∆t)

∆t
= θ

where ∆t is the time interval.
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To simplify the notation, we denote d(t, T (t+ ∆t)) the expression of the propor-
tional distance D∝T (t+∆t)(x(t), y(t);α, β).

The optimal path described in the above definition is said to be θ-regular path.
We assume an instantaneous adaption of the production unit integrating technolo-
gical progress. It is optimal as it characterizes the evolution of the technical effi ciency
frontier over time. The relation expressed in this definition is similar to that expressed
in the discrete case. The main difference between both definitions rests on the in-
stantaneous feature which prevents the production unit from admitting technological
decay in the continuous case.

Lemma 4.1.2 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms T1-
T4. Let {(x(t), y(t))}t≥t0 be an optimal and θ-regular dynamical path. If {(x(t), y(t))}t≥t0
is θ-regular, we have

x(t) = e−θtAx0 and y(t) = eθtBy0

where θ is the instantaneous variation rate of factors or products.

Proof: Let us assume that (x(t + ∆t), y(t + ∆t)) realizes the value d(t, T (t+ ∆t))
on ∂∝α,β(T (t+ ∆t)). For all (i, j) ∈ I(x(t))× J(y(t)), we have

xi(t+ ∆t) = xi(t)− xi(t)αid(t, T (t+ ∆t)) (4.1)

and

yj(t+ ∆t) = yj(t) + yj(t)βjd(t, T (t+ ∆t)). (4.2)

As ∆t > 0, we can divide expressions 4.1 and 4.2 by ∆t. We obtain

xi(t+ ∆t)− xi(t)
∆t

= −H(∆t)

∆t
αixi(t)

and
yj(t+ ∆t)− yj(t)

∆t
=
H(∆t)

∆t
βjyj(t).

As H(0) = d(t, T (t)) = 0 and the function H is right-differentiable at 0, we can
evaluate the limit of the above both expressions when ∆t→ 0+

lim
∆t→0+

xi(t+ ∆t)− xi(t)
∆t

= −θαixi(t)

and

lim
∆t→0+

yj(t+ ∆t)− yj(t)
∆t

= θβjyj(t).

Similarly, we can assume that (x(t), y(t) realizes the value d(t − ∆t, T (t)) on
∂∝α,β(T (t)). For all (i, j) ∈ I(x(t))× J(y(t)), we have:

xi(t) = xi(t−∆t)− xi(t−∆t)αid(t−∆t, T (t))
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and
yj(t) = yj(t−∆t) + yj(t−∆t)βjd(t−∆t, T (t)).

Simple permutations yield:

xi(t)− xi(t−∆t)

∆t
= −H(∆t)

∆t
αixi(t−∆t)

and
yj(t)− yj(t−∆t)

∆t
=
H(∆t)

∆t
βjyj(t−∆t).

As d(t, T (t+ ∆t)) = H(∆t) and lim∆t→0+ H(∆t) = 0, we can evaluate the limits
of both expressions. These are equal to

lim
∆t→0+

xi(t)− xi(t−∆t)

∆t
= −θαixi(t)

and

lim
∆t→0+

yj(t)− yj(t−∆t)

∆t
= θβjyj(t).

As the vectorial function (x(t), y(t)) is also left-differentiable at time period t, it
is differentiable ∀t ≥ t0. As a result, for all (i, j) ∈ I(x(t))× J(y(t)),

dxi(t)

dt
= −θαixi(t) and

dyj(t)

dt
= θβjyj(t).

We integrate both expressions from t0 to t and we denote x(t0) by x0 and y(t0)
by y0 to obtain

x(t) = e−θtAx0 and y(t) = eθtBy0.2

The dynamical path described above is similar to that in the regular interval
time in Section 3. However, it is ‘smoother’, i.e. the factors and the product are
‘continuously’used in the same proportion.
As we have used the concept of proportional distance function, we are able to

consider different weightings on the factors and the products. This allows us to have
various and non constant proportions between input and output. For instance, in the
case of a single product, the per capita output grows according to yt = eθtF (e−σtx0)
where F is the production function, θ the growth rate of a product and σ the decline
rate of factor at each time period. If the sum of the weightings are equal to 1, i.e.
θ+ σ, we have a purely proportional indicator.
When the coeffi cient associated with a factor (product) is null, the growth (de-

cline) rate is also null. This means that the decision unit does not have any room
for manoeuvre for the inputs (outputs) considered. We can then refer back to a
dynamics where only the product grows exponentially and where there is only one
exponential decay with respect to the inputs.
Finally, the case in which the factor weightings vary according to time could also

be considered. This is often what is reflected in the exponential specifications of
technological progress. The growth rate of technological progress is then not regular.
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4.2 The proportional Luenberger indicator

In continuous time, the proportional Luenberger indicator is equal to

L
(
x(t), y(t), x(t+ ∆t), y(t+ ∆t);α, β

)
=

1

2∆t

[(
D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t+ ∆t), y(t+ ∆t);α, β

))
(4.3)

+
(
D∝T (t+∆t)

(
x(t), y(t);α, β

)
−D∝T (t+∆t)

(
x(t+ ∆t), y(t+ ∆t);α, β

))]
In the case of a Cobb-Douglas production function with constant returns to scale

with α = 11n and β = 0, L
(
x(t), y(t), x(t+ ∆t), y(t+ ∆t);α, β

)
= TECHt,t+∆t where

TECHt,t+∆t =
1

2

[A(t+ ∆t)− A(t)

A(t)
+
A(t+ ∆t)− A(t)

A(t+ ∆t)

]
. (4.4)

If the path {xt}t≥t0 is optimal and A is assumed differentiable at time period t,
we obtain

lim
∆t→0

L
(
x(t), y(t), x(t+ ∆t), y(t+ ∆t);α, β

)
=
dA(t)/dt

A(t)
. (4.5)

If the proportional distance function is continuously differentiable in time periods
s and t, the proportional Luenberger indicator in continuous time is then defined by:

L
(
x(t), y(t);α, β

)
= −

∂D∝T (t)

(
x(s), y(s);α, β

)
∂s

∣∣∣∣∣
s=t

(4.6)

Lemma 4.2.1 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms T1-
T4. Let {(x(t), y(t))}t≥t0 be a dynamical path. If D∝T (t)

(
x(s), y(s);α, β

)
is continu-

ously differentiable in time periods s and t, then

L
(
x(t), y(t);α, β

)
= −

dD∝T (s)

(
x(s), y(s);α, β

)
ds

∣∣∣∣∣
s=t

+
∂D∝T (s)

(
x(t), y(t);α, β

)
∂s

∣∣∣∣∣
s=t

.

Proof: Let Φ : [t0,+∞[×[t0,+∞[ be the map defined by

Φ(s, t) = D∝T (s)

(
x(t), y(t);α, β

)
.

It follows that D∝T (s)

(
x(s), y(s);α, β

)
= Φ(ξ(s)) where ξ(s) = (s, s). Differentiating

in s yields
dΦ(s, s

)
ds

∣∣∣∣∣
s=t

=
∂Φ(s, t)

∂s

∣∣∣∣
s=t

+
∂Φ(s, t)

∂t

∣∣∣∣
s=t

.
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From which we obtain

dD∝T (s)

(
x(s), y(s);α, β

)
ds

∣∣∣∣∣
s=t

=
∂D∝T (s)

(
x(t), y(t);α, β

)
∂s

∣∣∣∣∣
s=t

+
∂D∝T (s)

(
x(t), y(t);α, β

)
∂t

∣∣∣∣∣
s=t

.

Since
∂D∝

T (s)

(
x(t),y(t);α,β

)
∂t

∣∣∣∣
s=t

=
∂D∝

T (t)

(
x(s),y(s);α,β

)
∂s

∣∣∣∣
s=t

, we deduce the result.2

From this Lemma, we derive the following corollary defining the proportional
Luenberger indicator when the time interval is infinitively small.

Corollary 4.2.2 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms
T1-T4. Let {(x(t), y(t))}t≥t0 be a dynamical path. If D∝T (t)

(
x(s), y(s);α, β

)
is con-

tinuously differentiable in time periods s and t, then

lim
∆t→0

L
(
x(t), y(t), x(t+ ∆t), y(t+ ∆t);α, β

)
= L

(
x(t), y(t);α, β

)
.

Proof: By definition, we have

L
(
x(t), y(t), x(t+ ∆t), y(t+ ∆t);α, β

)
=

1

2

[(D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t+ ∆t), y(t+ ∆t);α, β

)
∆t

)
+
(D∝T (t+∆t)

(
x(t), y(t);α, β

)
−D∝T (t+∆t)

(
x(t+ ∆t), y(t+ ∆t);α, β

)
∆t

)]
.

Since the proportional distance function is continuously differentiable, we deduce

lim
∆t→0

1

2

[
D∝T (t)

(
x(t), y(t);α, β

)
−D∝T (t)

(
x(t+ ∆t), y(t+ ∆t);α, β

)
∆t

]

+ lim
∆t→0

1

2

[
D∝T (t+∆t)

(
x(t), y(t);α, β

)
−D∝T (t+∆t)

(
x(t+ ∆t), y(t+ ∆t);α, β

)
∆t

]

= −
∂D∝T (t)

(
x(s), y(s);α, β

)
∂s

∣∣∣∣∣
s=t

= L
(
x(t), y(t);α, β

)
.2

It follows that the proportional effi ciency change in continuous time denoted
CEFCH is equal to

CEFCH = −
dD∝T (s)

(
x(s), y(s);α, β

)
ds

∣∣∣∣∣
s=t

(4.7)

while the proportional technological change in continuous time denoted CTECH
is

CTECH =
∂D∝T (s)

(
x(t), y(t);α, β

)
∂s

∣∣∣∣∣
s=t

(4.8)
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Corollary 4.2.3 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms T1-
T4. Let {(x(t), y(t))}t≥t0 be an optimal and θ-regular dynamical path.
If D∝T (t)

(
x(s), y(s);α, β

)
is continuously differentiable in time periods s and t,

then

L
(
x0e
−θtA, y0e

θtB;α, β
)

= θ.

This corollary states that a unique parameter characterizes the technological pro-
gress.

5 An exponential approach

In macroeconomics, growth is evaluated from exponential functions which capture
technological progress over time. For this purpose we develop the concept of ex-
ponential distance function and establish its properties below. As we shall see, the
exponential distance function has the main advantage to facilitate the productivity
analysis in a macrodynamical framework. Indeed, the dynamics is independent on
the size of the production unit (i.e. a country in a macroeconomics context).

5.1 Definition and properties

Let us first introduce the linear map Φδ
α,β : Rn+p

+ −→ Rn+p
+ defined for all δ ∈ R as

Φδ
α,β(x, y) =

(
e−δAx, eδBy

)
(5.1)

Definition 5.1.1 The map Dexp
T (t) : Rn+p

+ −→ R ∪ {−∞,+∞} defined by

Dexp
T (t)(x, y;α, β) = sup{δ : Φδ

α,β(x, y) ∈ T (t)} (5.2)

is called the exponential Distance Function.

This function satisfies the properties gathered in the following proposition.

Proposition 5.1.2 For all (α, β) ∈ [0, 1]n× [0, 1]p the exponential distance function
satisfies the following properties:

(1) (x, y) ∈ T (t) if and only if Dexp
T (t)(x, y;α, β) ≥ 0;

(2) For all (x, y), (u, v) ∈ T (t) ∧ (−u, v) ≥ (−x, y) =⇒ Dexp
T (t)(x, y;α, β) ≤

Dexp
T (t)(u, v;α, β);

(3) If α = 11n and β = 0, then Dexp
T (t)(x, y; 11n, 0) = − ln(Ei

t(x, y));
(4) If α = 0 and β = 11p, then Dexp

T (t)(x, y; 0, 11p) = ln(Eo
t (x, y));

(5) Dexp
T (t)

(
Φθ
α,β(x, y);α, β

)
= Dexp

T (t)

(
x, y;α, β

)
− θ.
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Proof:
(1) immediately comes from the fact that Φ0

α,β is the identity map.
(2) Let us denote K = Rn− × R

p
+. If (−u, v) ≥ (−x, y), then

{δ : (e−δAx, eδAy) ∈ ((u, v) +K)} ⊂ {δ : (e−δAx, eδAy) ∈ ((x, y) +K)}.

In addition, we also have

{δ : (e−δAu, eδAv) ∈ ((u, v) +K)} ⊂ {δ : (e−δAx, eδAy) ∈ ((u, v) +K)}.

It follows

{δ : (e−δAu, eδAv) ∈ ((u, v) +K)} ⊂ {δ : (e−δAx, eδAy) ∈ ((x, y) +K)}.

which proves (2).
(3) If α = 11n and β = 0, then

Dexp
T (t)(x, y; 11n, 0) = sup{δ : (e−δx, y) ∈ T (t)}.

We set λ = eδ and obtain

Dexp
T (t)(x, y; 11n, 0) = ln

(
sup{λ > 0 : (λ−1x, y) ∈ T (t)}

)
.

It follows that setting µ = λ−1, we have:

Dexp
T (t)(x, y; 11n, 0) = − ln

(
inf{µ ≥ 0 : (µx, y) ∈ T (t)}

)
= − ln(Ei

t(x, y)).

(4) The proof of (4) is similar to the proof of (3).
(5) We have:

Dexp
T (t)

(
Φθ
α,β(x, y);α, β

)
= sup{δ : Φδ

α,βΦθ
α,β(x, y) ∈ T (t)}

= sup{δ : (e−(δ+θ)Ax, e(δ+θ)By) ∈ T (t)}
= sup{δ′ : (e−δ

′Ax, eδ
′By) ∈ T (t)} − θ

= Dexp
T (t)

(
x, y;α, β

)
− θ.2

Property 1 states that the exponential distance function characterizes the techno-
logy. This distance function satisfies the traditional monotonicity axiom by Property
2. In what follows, we denote ‘>’the partial order relative to this measure. Proper-
ties 3 and 4 indicates that the Farrell input measure and the Farrell output measure
are special cases of this distance function. Property 5 allows us to deduce that this
distance function is exponential translation homothetic.
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6 Exponential Luenberger indicator

To be able to define the exponential Luenberger indicator, we first need to explain
the concept of regularity in this setting.

Lemma 6.0.3 Let {T (t)}t=0,1,...,t be a family of embedded production sets satisfying
Axioms T1-T4. Let {(x(τ), y(τ))}τ=0,1,...,t be an optimal and θ-regular dynamical
path. For all t < s, we have

Dexp
T (s)(x(t), y(t);α, β) = θ(s− t).

Proof: If {(x(t), y(t))}t=0,1,...,t is an optimal and θ-regular dynamical path, then
(x(τ), y(τ)) = (e−θτAx(0), eθτBy(0)). Therefore (x(t), y(t)) = (e−θtAx(0), eθtBy(0))
and (x(s), y(s)) = (e−θsAx(0), eθsBy(0)). Hence (x(s), y(s)) = (e−θ(s−t)Ax(t), eθ(s−t)By(t)).
However, as by definition, (x(s), y(s)) is a frontier point of T (s), it follows that

Dexp
T (s)(x(s), y(s);α, β) = 0 = Dexp

T (s)(e
−θ(s−t)Ax(s), eθ(s−t)By(s);α, β)

= Dexp
T (s)(x(t), y(t);α, β)− θ(s− t) (6.1)

which ends the proof.2

By analogy to the definition provided in (3.2), we can introduce the so-called
exponential Luenberger indicator. If s 6= t, we have

Lexp
t,s

(
x(t), y(t), x(s), y(s);α, β

)
=

1

2(s− t)

[(
Dexp
T (t)

(
x(t), y(t);α, β

)
−Dexp

T (t)

(
x(s), y(s);α, β

))
(6.2)

+
(
Dexp
T (s)

(
x(t), y(t);α, β

)
−Dexp

T (s)

(
x(s), y(s);α, β

))]
As in the previous sections, we denote this exponential Luenberger indicator

PCHexp
t,s . The latter can be decomposed into two components: the exponential

effi ciency change, EFCHexp
t,s , and the exponential technological change, TECH

exp
t,s .

It can be expressed as

PCHexp
t,s = EFCHexp

t,s + TECHexp
t,s (6.3)

where

EFCHexp
t,s =

1

(s− t)

[
Dexp
T (t)

(
x(t), y(t);α, β

)
−Dexp

T (s)

(
x(s), y(s);α, β

)]
(6.4)

and

TECHexp
t,s =

1

2(s− t)

[(
Dexp
T (s)

(
x(t), y(t);α, β

)
−Dexp

T (t)

(
x(t), y(t);α, β

))
(6.5)

+
(
Dexp
T (s)

(
x(s), y(s);α, β

)
−Dexp

T (t)

(
x(s), y(s);α, β

))]
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Corollary 6.0.4 Let {T (t)}t≥t0 be a family of production sets satisfying Axioms T1-
T4. Let {(x(t), y(t))}t≥t0 be an optimal and θ-regular dynamical path. For all t < s,
we have

Lexp
t,s

(
x(t), y(t), x(s), y(s);α, β

)
= TECHexp

t,s = θ.

Proof: Since {(x(t), y(t))}t≥t0 is an optimal and θ-regular dynamical path, we have

Dexp
T (t)

(
x(t), y(t);α, β

)
= 0 and Dexp

T (s)

(
x(s), y(s);α, β

)
= 0.

Hence

EFCHexp
t,s = 0

and

TECHexp
t,s =

1

2(s− t)

[(
Dexp
T (s)

(
x(t), y(t);α, β

)
−Dexp

T (t)

(
x(s), y(s);α, β

))]
.

From Lemma 6.0.3, it follows

TECHexp
t,s =

1

2(s− t)
[
θ(s− t)− θ(t− s)

]
= θ.2

6.1 Examples

6.1.1 Cobb-Douglas parametric case

We consider the Cobb-Douglas technology defined in (2.11) and we assume that firms
are effi cient at each time period. If we set α = 11n and β = 0, we have

Dexp
T (t)(x(t), y(t); 11n, 0) = Dexp

T (s)(x(s), y(s); 11n, 0) = EFCHexp
t,s = 0 (6.6)

and

Dexp
T (t)(x(s), y(s); 11n, 0) = sup

{
δ : y(s) ≤ A(t)

n∏
i=1

(
e−δxi(t)

)γi} (6.7)

with γi > 0 and
n∑
i=1

γi = 1. Therefore we have PCHexp
t,s = TECHexp

t,s . Taking the

Log-transformation to the inequation in (6.7) yields

Dexp
T (t)(x(s), y(s); 11n, 0) = sup

{
δ : ln(y(s)) ≤ −δ + ln

(
A(t)

n∏
i=1

(
xi(t)

)γi) }
= sup

{
δ : δ ≤ ln

(
A(t)

n∏
i=1

(
xi(t)

)γi)− ln(y(s))
}

= sup
{
δ : δ ≤ ln

(A(t)

A(s)

)}
= ln(A(t))− ln(A(s)) (6.8)
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Similarly,

Dexp
T (s)(x(t), y(t); 11n, 0) = ln(A(s))− ln(A(t)),

which yields

TECHexp
t,s =

ln(A(s))− ln(A(t))

(s− t) (6.9)

As A is continuously differentiable with respect to the time period, we obtain

lim
s−→t

TECHexp
t,s =

ln(A(s))− ln(A(t))

(s− t) =
d(ln(A(t)))

dt
=
d(A(t))/dt

A(t)

which is equivalent to the Solow’s formula of technological progress as we saw in
Section 2.

6.1.2 Cobb-Douglas non-parametric case

At each time period we consider J observed firms. Let {(xj(τ), yj(τ))}τ=0,...,t be the
jth dynamical path. We assume that for all j and all τ we have (xj(τ), yj(τ)) > 0.
As in Banker and Maindiratta (1986), we consider a class of Cobb-Douglas non
parametric technologies defined by

T(τ) =
{
(x(τ), y(τ)) : x(τ) ≥

J∏
j=1

xj(τ)
λj ; y(τ) ≤

J∏
j=1

yj(τ)
λj ;

J∑
j=1

λj = 1; λ ≥ 0
}
. (6.10)

The evaluation of Dexp
T (t)(x(s), y(s);α, β) implies solving the following maximiza-

tion program:

Dexp
T (t)(x(s), y(s);α, β) = max δ

subject to e−δAx(s) ≥
J∏
j=1

xj(t)
λj

eδBy(s) ≤
J∏
j=1

yj(t)
λj (6.11)∑

j

λj = 1, λj ≥ 0

We can apply a Log-transformation to the above program to obtain:
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Dexp
T (t)(x(s), y(s);α, β) = max δ

subject to lnx(s)− δα ≥
J∑
j=1

λj lnxj(t)

ln y(s) + δβ ≤
J∑
j=1

λj ln yj(t) (6.12)∑
j

λj = 1, λj ≥ 0

where we denote ln z = (ln z1, ..., ln zn+p) all vector z of Rn+p
+ from which can be

deduced EFCHexp
t,s , TECH

exp
t,s and PCHexp

t,s .

7 Conclusion

We have introduced Farrell technical effi ciencies in simple Solow models by adopting
a Luenberger-type approach. This introduction has allowed us to make an analogy
between a firm’s behavior in a microeconomic setting and a country’s behavior in
a macroeconomic setting, both in a discrete time framework and a continuous time
framework. In both cases, we were able to estimate the total factor productivity
without having specified the production function. We were also able to evaluate
production ineffi ciencies and therefore identify possible aggregate gains.
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